Solar Physics

, 292:149 | Cite as

Impacts on Cosmic-Ray Intensity Observed During Geomagnetic Disturbances

  • Binod Adhikari
  • Nirakar Sapkota
  • Prashrit Baruwal
  • Narayan P. Chapagain
  • Carlos Roberto Braga


Geomagnetic disturbances are the results of interplanetary causes such as high-speed streamers (HSSs), interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs), and magnetic clouds. During different forms of geomagnetic disturbances, we observed changes in the count rate at neutron monitors that are kept at various locations. We studied the count rates measured by neutron monitors at four stations at various latitudes during different categories of geomagnetic events and compared them. We analysed five events: a geomagnetically quiet event, a non-storm high-intensity long-duration continuous AE activity (HILDCAA) event, a storm-preceded HILDCAA event, a geomagnetic substorm event, and a geomagnetic moderate storm event. We based our analysis on geomagnetic indices, solar wind parameters, and interplanetary magnetic field (IMF) parameters. We found that the strength of the modulation was least during the quiet event and highest during the storm-preceded HILDCAA. By analysing the cause of these geomagnetic disturbances, we related each decrease in the neutron monitor data with the corresponding solar cause. For the ICME-driven storm, we observed a decrease in neutron monitor data ranging from 6% to 12% in all stations. On the other hand, we observed a decrease ranging from 2% to 5% for the HSS-driven storm. For the non-storm HILDCAA, we observed a decrease in neutron monitor data of about 1% to 1.5%. For the quiet event, the neutron monitor data fluctuated such that there was no overall decrease in all stations.


Geomagnetic disturbances Storm Substorm Moderate storm HILDCAA Neutron monitor data 



The solar wind and interplanetary magnetic field data for this study were obtained from . The neutron monitors of the Bartol Research Institute are supported by NSF grant ATM-0527878. We downloaded the neutron data from . C.R. Braga acknowledges grants 2014/24711-6, 2013/02712-8, and 2012/05436-9 from the São Paulo Research Foundation (FAPESP).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Adhikari, B.: 2015, HILDCAA-related effects recorded in middle-low latitude Magnetometers. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE). Google Scholar
  2. Adhikari, B., Chapagain, N.P.: 2015, Polar cap potential and merging electric field during high intensity long duration continuous auroral activity. J. Nepal Phys. Soc. 3(1), 6.  DOI. CrossRefGoogle Scholar
  3. Adhikari, B., Baruwal, P., Chapagain, N.P.: 2017, Analysis of moderate storm events with reference to polar cap potential and polar cap index. Earth Space Sci. 4, 2.  DOI. ADSCrossRefGoogle Scholar
  4. Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, A07S05.  DOI. CrossRefGoogle Scholar
  5. Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Sáiz, A., Ruffolo, D.: 2013, Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth Observations. Astrophys. J. 771, 92.  DOI. ADSCrossRefGoogle Scholar
  6. Blanco, J.J., Catalan, E., Hidalgo, M.A., Medina, J., Garcia, O., Rodriguez-Pacheco, J.: 2013, Observable effects of interplanetary coronal mass ejections on ground level neutron monitor counting rates. Solar Phys. 284, 167.  DOI. ADSCrossRefGoogle Scholar
  7. Bütikofer, R., Flückiger, E.O., Desorghner, L., Moser, M.R., Pirard, B.: 2009, The solar cosmic ray ground-level enhancement on 20 January 2005 and 13 December 2006. Adv. Space Res. 43, 499. ADSCrossRefGoogle Scholar
  8. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55.  DOI. ADSCrossRefGoogle Scholar
  9. Cane, H.V., Richardson, I.G., Von Rosenvinge, T.T.: 1993, Cosmic ray decreases and particle acceleration in 1978 – 1982 and the associated solar wind structures. J. Geophys. Res. 98, 295.  DOI. Google Scholar
  10. Cane, H.V., Richardson, I.G., Von Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101, 561.  DOI. Google Scholar
  11. Chapagain, N.P.: 2016, Total ozone content over Kathmandu from TOMS observations. Int. J. Eng. Res. Appl. 6, 69. Google Scholar
  12. De Mendonça, R.R.S., Raulin, J.P., Echer, E., Makhmutov, V.S., Fernandez, G.: 2013, Analysis of atmospheric pressure and temperature effects on cosmic ray measurements. J. Geophys. Res. Space Phys. 118, 1403.  DOI. ADSCrossRefGoogle Scholar
  13. Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47.  DOI. ADSCrossRefGoogle Scholar
  14. Echer, E., Gonzalez, W.D., Tsurutani, B.T., Clua-Gonzalez, A.L.: 2008, Interplanetary conditions leading to superintense geomagnetic storms (\(\mathrm{Dst}\leq {-}250~\mbox{nT}\)) during solar cycle 23 (1996 – 2006). J. Geophys. Res. 113(13), 17.  DOI. Google Scholar
  15. Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51(12), 1108.  DOI. ADSCrossRefGoogle Scholar
  16. Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (\(\mathrm{dst}<{-}100~\mbox{nt}\)). Planet. Space Sci. 35, 1101.  DOI. ADSCrossRefGoogle Scholar
  17. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99(A4), 5771.  DOI. ADSCrossRefGoogle Scholar
  18. Gonzalez, W.D., Tsurutani, B.T., Clua de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529.  DOI. ADSCrossRefGoogle Scholar
  19. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21.  DOI. ADSCrossRefGoogle Scholar
  20. Gosling, J.T., Mccomas, D.K., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831.  DOI. ADSCrossRefGoogle Scholar
  21. Guarnieri, F.L., Tsurutani, B.T., Gonzalez, W.D., Echer, E., Gonzalez, A.L.C., Grande, M., Soraas, F.: 2006, ICME and CIR storms with particular emphasis on HILDCAA events. In: ILWS Workshop, Goa. Google Scholar
  22. Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. Space Phys. 118, 5626.  DOI. ADSCrossRefGoogle Scholar
  23. Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2014, Relativistic electron acceleration during high-intensity, long-duration, continuous AE activity (HILDCAA) events: Solar cycle phase dependences. Geophys. Res. Lett. 41, 1876.  DOI. ADSCrossRefGoogle Scholar
  24. Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Gjerloev, J.W.: 2016, Supersubstorms (\(\mathrm{SML}<-2500~\mbox{nT}\)): Magnetic storm and solar cycle dependences. J. Geophys. Res. Space Phys. 121, 7805.  DOI. ADSCrossRefGoogle Scholar
  25. Hudson, H.S., Bougeret, J.-L., Burkepile, J.: 2006, Coronal mass ejections: Overview of observations. Space Sci. Rev. 123, 13.  DOI. ADSCrossRefGoogle Scholar
  26. Kamide, Y., Richmond, A.D., Matsushita, S.: 1981, Estimation of ionospheric electric fields, ionospheric currents and field-aligned currents from ground magnetic records. J. Geophys. Res. 86, 801.  DOI. ADSCrossRefGoogle Scholar
  27. Kozyra, J.U., et al.: 2014, Solar filament impact on 21 January 2005: Geospace consequences. J. Geophys. Res. Space Phys. 119, 5401.  DOI. ADSCrossRefGoogle Scholar
  28. Kudela, K., Brenkus, R.: 2004, Cosmic ray decreases and geomagnetic activity: List of events 1982 – 2002. J. Atmos. Solar-Terr. Phys. 66, 1121.  DOI. ADSCrossRefGoogle Scholar
  29. Kumar, A., Badruddin: 2014, Cosmic-ray modulation due to high-speed solar-wind streams of different sources, speed, and duration. Solar Phys. 289, 4267.  DOI. ADSCrossRefGoogle Scholar
  30. Lakhina, G.S., Alex, S., Tsurutani, B.T., Gonzalez, W.D.: 2005, Research on historical records of geomagnetic storms. In: Proceedings of the International Astronomical Union, 2004 (IAUS226), 3.  DOI. Google Scholar
  31. Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658.  DOI. ADSCrossRefGoogle Scholar
  32. Lockwood, J.A., Webber, W.R.: 1992, On the interplanetary cosmic ray latitudinal gradient. J. Geophys. Res. Space Phys. 97(A6), 8221.  DOI. ADSCrossRefGoogle Scholar
  33. Lyons, L.R., Lee, D.-Y., Thorne, R.M., Horne, R.B., Smith, A.J.: 2005, Solar wind–magnetosphere coupling leading to relativistic electron energization during high-speed streams. J. Geophys. Res. 110, A11202.  DOI. ADSCrossRefGoogle Scholar
  34. Parnahaj, I., Kudela, K., Kancirova, M.: 2013, On cosmic ray decreases, geomagnetic storms, and CMEs. In: WDS’13 Proceedings of Contributed Papers, Part II, 13. Google Scholar
  35. Prestes, A., Klausner, V., Ojeda-Gonzalez, A., Serra, S.L.: 2016, HILDCAA* events between 1998 and 2007 and their related interplanetary magnetic field and plasma values. arXiv.
  36. Ryan, J.M., Lockwood, J.A., Debrunner, H.: 2000, Solar energetical particles. Space Sci. Rev. 93, 35.  DOI. ADSCrossRefGoogle Scholar
  37. Shea, M.A., Smart, D.F.: 2001, Vertical cutoff rigidities for cosmic ray stations since 1955. In: Proc. Int. Conf. Cosmic Rays 27th, 4063. Google Scholar
  38. Silva, M.R., Alarcon, W.D., Echer, E., et al.: 2007, Multitaper spectral analysis of cosmic rays Sao Martinho da Serra’s muon telescope and Newark’s neutron monitor data. Rev. Bras. Geofís. 25(suppl2), 163.  DOI. CrossRefGoogle Scholar
  39. Simpson, J.A.: 2000, The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. Space Sci. Rev. 93, 11.  DOI. ADSCrossRefGoogle Scholar
  40. Simpson, J.A., Fonger, W., Treiman, S.B.: 1953, Cosmic radiation intensity-time variations and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934.  DOI. ADSCrossRefGoogle Scholar
  41. Smith, E.J., Wolf, J.H.: 1976, Observation of interaction region and corotating shocks between one and five AU: Pioneer 10 and 11. Geophys. Res. Lett. 3, 137.  DOI. ADSCrossRefGoogle Scholar
  42. Tanskanen, E., Pulkkinen, T.I., Koskinen, H.E.J.: 2002, Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J. Geophys. Res. 107(A6), 1086.  DOI. CrossRefGoogle Scholar
  43. Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93, 8519.  DOI. ADSCrossRefGoogle Scholar
  44. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717.  DOI. ADSCrossRefGoogle Scholar
  45. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, F.L., Kamide, Y., Zhou, X., Arballo, J.K.: 2004, Are High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events substorm expansion events? J. Atmos. Solar-Terr. Phys. 66, 167.  DOI. ADSCrossRefGoogle Scholar
  46. Tsurutani, B.T., Hajra, R., Echer, E., Gjerloev, J.W.: 2015, Extremely intense (\(\mathrm{SML} \leq {-}2500~\mbox{nT}\)) substorms: Isolated events that are externally triggered? Ann. Geophys. 33, 519.  DOI. ADSCrossRefGoogle Scholar
  47. Zurbuchen, T.H., Richardson, I.: 2006, In-situ solar wind and field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Binod Adhikari
    • 1
    • 2
  • Nirakar Sapkota
    • 2
  • Prashrit Baruwal
    • 3
  • Narayan P. Chapagain
    • 1
  • Carlos Roberto Braga
    • 4
  1. 1.Department of Physics, Patan M. CampusTribhuvan UniversityLalitpurNepal
  2. 2.Department of PhysicsSt. Xavier’s CollegeKathmanduNepal
  3. 3.Department of Physics, Amrit Science CampusTribhuvan UniversityKathmanduNepal
  4. 4.National Institute for Space Research – INPESão José dos CamposBrazil

Personalised recommendations