Solar Physics

, 292:140 | Cite as

Geomagnetic Effects of Corotating Interaction Regions

  • Bojan Vršnak
  • Mateja Dumbović
  • Jaša Čalogović
  • Giuliana Verbanac
  • Ivana Poljanǐć–Beljan
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients


We present an analysis of the geoeffectiveness of corotating interaction regions (CIRs), employing the data recorded from 25 January to 5 May 2005 and throughout 2008. These two intervals in the declining phase of Solar Cycle 23 are characterised by a particularly low number of interplanetary coronal mass ejections (ICMEs). We study in detail how four geomagnetic-activity parameters (the Dst, Ap, and AE indices, as well as the Dst time derivative, \(\mathrm{dDst}/\mathrm{d}t\)) are related to three CIR-related solar wind parameters (flow speed, \(V\), magnetic field, \(B\), and the convective electric field based on the southward Geocentric solar magnetospheric (GSM) magnetic field component, \(\mathit{VB}_{s}\)) on a three-hour time resolution. In addition, we quantify statistical relationships between the mentioned geomagnetic indices. It is found that Dst is correlated best to \(V\), with a correlation coefficient of \(\mathrm{cc}\approx0.6\), whereas there is no correlation between \(\mathrm{dDst}/\mathrm{d}t\) and \(V\). The Ap and AE indices attain peaks about half a day before the maximum of \(V\), with correlation coefficients ranging from \(\mathrm{cc}\approx0.6\) to \(\mathrm{cc}\approx0.7\), depending on the sample used. The best correlations of Ap and AE are found with \(\mathit{VB}_{s}\) with a delay of 3 h, being characterised by \(\mathrm{cc}\gtrsim 0.6\). The Dst derivative \(\mathrm{dDst}/\mathrm{d}t\) is also correlated with \(\mathit{VB}_{s}\), but the correlation is significantly weaker \(\mathrm{cc}\approx 0.4\) – 0.5, with a delay of 0 – 3 h, depending on the employed sample. Such low values of correlation coefficients indicate that there are other significant effects that influence the relationship between the considered parameters. The correlation of all studied geomagnetic parameters with \(B\) are characterised by considerably lower correlation coefficients, ranging from \(\mathrm{cc}=0.3\) in the case of \(\mathrm{dDst}/\mathrm{d}t\) up to \(\mathrm{cc}=0.56\) in the case of Ap. It is also shown that peak values of geomagnetic indices depend on the duration of the CIR-related structures. The Dst is closely correlated with Ap and AE (\(\mathrm{cc}=0.7\)), Dst being delayed for about 3 h. On the other hand, \(\mathrm{dDst}/\mathrm{d}t\) peaks simultaneously with Ap and AE, with correlation coefficients of 0.48 and 0.56, respectively. The highest correlation (\(\mathrm{cc}=0.81\)) is found for the relationship between Ap and AE.


Corotating interaction regions Solar wind Geoeffectiveness 



This work has been supported by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. M.D. and J.C. acknowledge the support by the ESF project PoKRet. The authors declare that they have no conflicts of interest.


  1. Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, A07S05.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Balogh, A., Gosling, J.T., Jokipii, J.R., Kallenbach, R., Kunow, H.: 1999, Corotating interaction regions. Space Sci. Rev. 89, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bartels, J., Heck, N.H., Johnston, H.F.: 1939, The three-hour-range index measuring geomagnetic activity. Terr. Magn. Atmos. Electr. 44, 411.  DOI. ADS. CrossRefGoogle Scholar
  4. Borovsky, J.E., Denton, M.H.: 2006, Differences between cme-driven storms and cir-driven storms. J. Geophys. Res. 111, A07S08.  DOI. ADSGoogle Scholar
  5. Burlaga, L.F., Lepping, R.P.: 1977, The causes of recurrent geomagnetic storms. Planet. Space Sci. 25, 1151.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Čalogović, J., Vršnak, B., Temmer, M., Veronig, A.M.: 2009, Cosmic ray modulation by corotating interaction regions. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 425.  DOI. ADS. Google Scholar
  7. Crowley, G., Reynolds, A., Thayer, J.P., Lei, J., Paxton, L.J., Christensen, A.B., Zhang, Y., Meier, R.R., Strickland, D.J.: 2008, Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys. Res. Lett. 35, L21106.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71, 785.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91.  DOI. ADS. CrossRefGoogle Scholar
  10. Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28.  DOI. ADS. CrossRefGoogle Scholar
  11. Echer, E., Gonzalez, W.D., Alves, M.V.: 2006, Minimum variance analysis of interplanetary coronal mass ejections around Solar Cycle 23 maximum (1998 – 2002). Solar Phys. 233, 249.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Emery, B.A., Richardson, I.G., Evans, D.S., Rich, F.J.: 2009, Solar wind structure sources and periodicities of auroral electron power over three solar cycles. J. Atmos. Solar-Terr. Phys. 71, 1157.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Finch, I.D., Lockwood, M.L., Rouillard, A.P.: 2008, Effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: separation of directly-driven and storage/release systems. Geophys. Res. Lett. 35, L21105.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51(12), 1108.  DOI. ADSCrossRefGoogle Scholar
  15. Gibson, S.E., Kozyra, J.U., de Toma, G., Emery, B.A., Onsager, T., Thompson, B.J.: 2009, If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res. 114, A09105.  DOI. ADS. ADSGoogle Scholar
  16. Gonzalez, W.D., Echer, E., Tsurutani, B.T., Clúa de Gonzalez, A.L., Dal Lago, A.: 2011, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun–Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci. 2, 13.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Gosling, J.T.: 1996, Corotating and transient solar wind flows in three dimensions. Annu. Rev. Astron. Astrophys. 34, 35.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626.  DOI. ADS. CrossRefGoogle Scholar
  21. Kataoka, R., Pulkkinen, A.: 2008, Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating interacting regions. J. Geophys. Res. 113, A03S12.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505.  DOI. ADSCrossRefGoogle Scholar
  23. Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of Solar Cycle 23: comparison of 3D numerical model results with observations. Solar Phys. 254, 155.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S.: 2008a, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett. 35, 10109.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Lei, J., Thayer, J.P., Forbes, J.M., Sutton, E.K., Nerem, R.S., Temmer, M., Veronig, A.M.: 2008b, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of Solar Cycle 23. J. Geophys. Res. 113(A12), A11303.  DOI. ADS. ADSGoogle Scholar
  26. Lei, J., Thayer, J.P., Forbes, J.M., Wu, Q., She, C., Wan, W., Wang, W.: 2008c, Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 35, L19105.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Lei, J., Thayer, J.P., Wang, W., McPherron, R.L.: 2011, Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Solar Phys. 274, 427.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (swepam) for the advanced composition explorer. Space Sci. Rev. 86, 563.  DOI. ADSCrossRefGoogle Scholar
  29. Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. In: Bull. Amer. Astron. Soc. 6, 292. Google Scholar
  30. Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. Space Phys. 10, 935.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU – Pioneers 10 and 11. Geophys. Res. Lett. 3, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Sugiura, M., Wilson, C.R.: 1964, Oscillation of the geomagnetic field lines and associated magnetic perturbations at conjugate points. J. Geophys. Res. 69, 1211.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  40. Tanskanen, E.I., Slavin, J.A., Tanskanen, A.J., Viljanen, A., Pulkkinen, T.I., Koskinen, H.E.J., Pulkkinen, A., Eastwood, J.: 2005, Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys. Res. Lett. 32, L16104.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Temmer, M., Vršnak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAS) – interplanetary Alfven wave trains. Planet. Space Sci. 35, 405.  DOI. ADSCrossRefGoogle Scholar
  43. Tsurutani, B.T., McPherron, R.L., Gonzalez, W.D., Lu, G., Sobral, J.H.A., Gopalswamy, N.: 2006, Introduction to special section on corotating solar wind streams and recurrent geomagnetic activity. J. Geophys. Res. 111, 1.  DOI. Google Scholar
  44. Tulasi Ram, S., Lei, J., Su, S.-Y., Liu, C.H., Lin, C.H., Chen, W.S.: 2010, Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008. Geophys. Res. Lett. 37, L02101.  DOI. ADS. ADSGoogle Scholar
  45. Vennerstroem, S.: 2001, Interplanetary sources of magnetic storms: a statistical study. J. Geophys. Res. 106, 29175.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 533, A49.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85.  DOI. ADSCrossRefGoogle Scholar
  49. Verkhoglyadova, O.P., Tsurutani, B.T., Mannucci, A.J., Mlynczak, M.G., Hunt, L.A., Runge, T.: 2013, Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Ann. Geophys. 31, 263.  DOI. ADSCrossRefGoogle Scholar
  50. Vršnak, B., Temmer, M., Veronig, A.M.: 2007a, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315.  DOI. ADSCrossRefGoogle Scholar
  51. Vršnak, B., Temmer, M., Veronig, A.M.: 2007b, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331.  DOI. ADSCrossRefGoogle Scholar
  52. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} <= -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A11), A10102.  DOI. ADS. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bojan Vršnak
    • 1
  • Mateja Dumbović
    • 1
    • 2
  • Jaša Čalogović
    • 1
  • Giuliana Verbanac
    • 3
  • Ivana Poljanǐć–Beljan
    • 4
  1. 1.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  2. 2.Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.Department of Geophysics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  4. 4.Department of PhysicsUniversity of RijekaRijekaCroatia

Personalised recommendations