Advertisement

Solar Physics

, 292:134 | Cite as

Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool

  • A. AnastasiadisEmail author
  • A. Papaioannou
  • I. Sandberg
  • M. Georgoulis
  • K. Tziotziou
  • A. Kouloumvakos
  • P. Jiggens
Radio and Space-based Observations
Part of the following topical collections:
  1. Combined Radio and Space-based Solar Observations: From Techniques to New Results

Abstract

A novel integrated prediction system for solar flares (SFs) and solar energetic particle (SEP) events is presented here. The tool called forecasting solar particle events and flares (FORSPEF) provides forecasts of solar eruptive events, such as SFs with a projection to occurrence and velocity of coronal mass ejections (CMEs), and the likelihood of occurrence of an SEP event. In addition, the tool provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the SEP characteristics (e.g. peak flux, fluence, rise time, and duration) per parent solar event. The prediction of SFs relies on the effective connected magnetic field strength (\(B_{\mathrm{eff}}\)) metric, which is based on an assessment of potentially flaring active-region (AR) magnetic configurations, and it uses a sophisticated statistical analysis of a large number of AR magnetograms. For the prediction of SEP events, new statistical methods have been developed for the likelihood of the SEP occurrence and the expected SEP characteristics. The prediction window in the forecasting scheme is 24 hours with a refresh rate of 3 hours, while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and ranges between 15 – 20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection, and the operational setup. Finally, we demonstrate the validation of the modules of the FORSPEF tool using categorical scores constructed on archived data, and we also discuss independent case studies.

Keywords

Sun: coronal mass ejections (CMEs) Sun: corona Sun: radio radiation Sun: solar energetic particle events Sun: forecasting systems Sun: integrated tools 

Notes

Acknowledgements

This work was supported through the ESA Contract No. 4000109641/13/NL/AK “Improvement of Solar Particle Events and Flare Prediction”. AA acknowledges the support through “SPECS: Solar Particle Events and foreCasting Studies” research grant of the National Observatory of Athens. The authors would like to thank Karl-Ludwig Klein and Angels Aran for constructive discussions. This article uses data from the CACTus CME catalog and the Solar Demon tool, generated and maintained by the Solar Influences Data Analysis Center (SIDC) at the Royal Observatory of Belgium (ROB). The provision of the SDO/HMI data by the Stanford Solar Group is also gratefully acknowledged.

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2002, Astrophys. J. 577, 487.  DOI. ADSCrossRefGoogle Scholar
  2. Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2003, Astrophys. J. 597, 1135.  DOI. ADSCrossRefGoogle Scholar
  3. Alberti, T., Laurenza, M., Cliver, E.W., Storini, M., Consolini, G., Lepreti, F.: 2017, Astrophys. J. 838(1), 59. http://stacks.iop.org/0004-637X/838/i=1/a=59. ADSCrossRefGoogle Scholar
  4. Anastasiadis, A.: 2002, J. Atmos. Solar-Terr. Phys. 64, 481.  DOI. ADSCrossRefGoogle Scholar
  5. Balch, C.C.: 1999, Radiat. Meas. 30(3), 231. CrossRefGoogle Scholar
  6. Balch, C.C.: 2008, Space Weather 6(1), S01001.  DOI. ADSCrossRefGoogle Scholar
  7. Bütikofer, R., Flückiger, E., Desorgher, L., Moser, M.: 2008, Sci. Total Environ. 391(2), 177. ADSCrossRefGoogle Scholar
  8. Cane, H.V., Lario, D.: 2006, Space Sci. Rev. 123, 45.  DOI. ADSCrossRefGoogle Scholar
  9. Dimitropoulou, M., Georgoulis, M., Isliker, H., Vlahos, L., Anastasiadis, A., Strintzi, D., Moussas, X.: 2009, Astron. Astrophys. 505, 1245.  DOI. ADSCrossRefGoogle Scholar
  10. Falconer, D., Moore, R., Gary, A.: 2007, In: American Astronomical Society Meeting Abstracts #210, Bulletin of the American Astronomical Society 39, 135. Google Scholar
  11. Georgoulis, M.K.: 2005, Solar Phys. 228, 5.  DOI. ADSCrossRefGoogle Scholar
  12. Georgoulis, M.K.: 2008, Geophys. Res. Lett. 35, L06S02.  DOI. CrossRefGoogle Scholar
  13. Georgoulis, M.K.: 2012, Astrophys. Space Sci. Proc. 30, 93.  DOI. ADSCrossRefGoogle Scholar
  14. Georgoulis, M.K., Rust, D.M.: 2007, Astrophys. J. Lett. 661, 109.  DOI. ADSCrossRefGoogle Scholar
  15. Georgoulis, M., Raouafi, N.-E., Henney, C.: 2008, ASP Conf. Ser. 383, 107. ADSGoogle Scholar
  16. Hapgood, M., Thomson, A.: 2010, Space weather: Its impact on earth and implications for business, Lloyd’s 360 Risk Insight. Google Scholar
  17. Holmes-Siedle, A., Adams, L.: 1993, Handbook of radiation effects. Google Scholar
  18. James, T., Subramanian, P., Kontar, E.P.: 2017, Mon. Not. Roy. Astron. Soc. 471(1), 89.  DOI. ADSCrossRefGoogle Scholar
  19. Jiggens, P., Chavy-Macdonald, M.-A., Santin, G., Menicucci, A., Evans, H., Hilgers, A.: 2014, J. Space Weather Space Clim. 4, A20. CrossRefGoogle Scholar
  20. Kraaikamp, E., Verbeeck, C.: 2015, J. Space Weather Space Clim. 5, A18. ADSCrossRefGoogle Scholar
  21. Krucker, S., White, S.M., Lin, R.P.: 2007, Astrophys. J. Lett. 669(1), L49. http://stacks.iop.org/1538-4357/ 669/i=1/a=L49. ADSCrossRefGoogle Scholar
  22. LaBonte, B., Georgoulis, M., Rust, D.: 2007, Astrophys. J. 671(1), 955. ADSCrossRefGoogle Scholar
  23. Laurenza, M., Cliver, E.W., Hewitt, J., Storini, M., Ling, A.G., Balch, C.C., Kaiser, M.L.: 2009, Space Weather 7, S04008.  DOI. ADSCrossRefGoogle Scholar
  24. Leka, K.D., Barnes, G.: 2007, Astrophys. J. 656, 1173.  DOI. ADSCrossRefGoogle Scholar
  25. Mason, J.P., Hoeksema, J.T.: 2010, Astrophys. J. 723, 634.  DOI. ADSCrossRefGoogle Scholar
  26. McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Astrophys. J. 631, 628.  DOI. ADSCrossRefGoogle Scholar
  27. Moon, Y.-J., Choe, G.S., Yun, H.S., Park, Y.D.: 2001, J. Geophys. Res. 106, 29951.  DOI. ADSCrossRefGoogle Scholar
  28. Núñez, M.: 2011, Space Weather 9(7). Google Scholar
  29. Papaioannou, A., Anastasiadis, A., Sandberg, I., Georgoulis, M.K., Tsiropoula, G., Tziotziou, K., Jiggens, P., Hilgers, A.: 2015, J. Phys. Conf. Ser. 632(1), 012075. http://stacks.iop.org/1742-6596/632/i=1/ a=012075. CrossRefGoogle Scholar
  30. Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, J. Space Weather Space Clim. 6(27), A42.  DOI. ADSCrossRefGoogle Scholar
  31. Papaioannou, A., Anastasiadis, A., Sandberg, I., Jiggens, P.: 2017, J. Space Weather Space Clim. Google Scholar
  32. Patsourakos, S., Georgoulis, M., Vourlidas, A., Nindos, A., Sarris, T., Anagnostopoulos, G., Anastasiadis, A., Chintzoglou, G., Daglis, I., Gontikakis, C., et al.: 2016, Astrophys. J. 817(1), 14. ADSCrossRefGoogle Scholar
  33. Qahwaji, R., Colak, T.: 2007, Solar Phys. 241, 195.  DOI. ADSCrossRefGoogle Scholar
  34. Robbrecht, E., Berghmans, D.: 2004, Astron. Astrophys. 425(3), 1097. ADSCrossRefGoogle Scholar
  35. Robbrecht, E., Berghmans, D., Van der Linden, R.: 2009, Astrophys. J. 691(2), 1222. ADSCrossRefGoogle Scholar
  36. Sandberg, I., Jiggens, P., Heynderickx, D., Daglis, I.A.: 2014, Geophys. Res. Lett. 41, 4435.  DOI. ADSCrossRefGoogle Scholar
  37. Schrijver, C.J.: 2007, Astrophys. J. Lett. 655, 117.  DOI. ADSCrossRefGoogle Scholar
  38. Smart, D.F., Shea, M.A.: 1989, J. Spacecr. Rockets 26, 403.  DOI. ADSCrossRefGoogle Scholar
  39. Srour, J.R., McGarrity, J.M.: 1988, Proc. IEEE 76(11), 1443. ADSCrossRefGoogle Scholar
  40. Uritsky, V.M., Paczuski, M., Davila, J.M., Jones, S.I.: 2007, Phys. Rev. Lett. 99(2), 025001.  DOI. ADSCrossRefGoogle Scholar
  41. Uritsky, V.M., Davila, J.M., Ofman, L., Coyner, A.J.: 2013, Astrophys. J. 769, 62.  DOI. ADSCrossRefGoogle Scholar
  42. Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L., Afanasiev, A., Agueda, N., Aurass, H., Battarbee, M., Braune, S., Dröge, W., Ganse, U., Hamadache, C., Heynderickx, D., Huttunen-Heikinmaa, K., Kiener, J., Kilian, P., Kopp, A., Kouloumvakos, A., Maisala, S., Mishev, A., Miteva, R., Nindos, A., Oittinen, T., Raukunen, O., Riihonen, E., Rodríguez-Gasén, R., Saloniemi, O., Sanahuja, B., Scherer, R., Spanier, F., Tatischeff, V., Tziotziou, K., Usoskin, I.G., Vilmer, N.: 2013, J. Space Weather Space Clim. 3(27), A12.  DOI. CrossRefGoogle Scholar
  43. Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, J. Geophys. Res. 110, A12S05.  DOI. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. Anastasiadis
    • 1
    Email author
  • A. Papaioannou
    • 1
  • I. Sandberg
    • 1
  • M. Georgoulis
    • 2
  • K. Tziotziou
    • 1
  • A. Kouloumvakos
    • 3
  • P. Jiggens
    • 4
  1. 1.Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS)National Observatory of AthensPenteliGreece
  2. 2.Research Center for Astronomy and Applied Mathematics (RCAAM)Academy of AthensAthensGreece
  3. 3.Section of Astrogeophysics, Department of PhysicsUniversity of IoanninaIoanninaGreece
  4. 4.European Space Research and Technology Centre (ESTEC)NoordwijkThe Netherlands

Personalised recommendations