Solar Physics

, 292:145 | Cite as

Trigger of Successive Filament Eruptions Observed by SDO and STEREO

  • Sajal Kumar Dhara
  • Ravindra Belur
  • Pankaj Kumar
  • Ravinder Kumar Banyal
  • Shibu K. Mathew
  • Bhuwan Joshi


Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.


Sun: filaments, prominences Sun: magnetic fields Sun: corona Sun: sunspots 



We thank the referee for many valuable and insightful comments that greatly helped us to improve the quality of the manuscript. The AIA data are courtesy of the SDO (NASA) and AIA consortium. SDO/HMI is a joint effort of many teams and individuals to whom we are greatly indebted for providing the data. This work also utilizes data obtained by the GONG Program, managed by the National Solar Observatory, which is operated by AURA Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Inter-American Observatory. The EUVI images are supplied by the STEREO/SECCHI team.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2017_1158_MOESM1_ESM.avi (126.5 mb)
(AVI 126MB)
11207_2017_1158_MOESM2_ESM.avi (153.4 mb)
(AVI 153MB)
11207_2017_1158_MOESM3_ESM.avi (26.6 mb)
(AVI 26.6MB)


  1. Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: initiation, magnetic helicity, and flux ropes, II: Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K.: 1998, The magnetic topology of solar eruptions. Astrophys. J. Lett. 502, L181.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J.: 2016, The vertical-current approximation nonlinear force-free field code description, performance tests, and measurements of magnetic energies dissipated in solar Flares. Astrophys. J. Suppl. Ser. 224, 25.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Bateman, G.: 1978, MHD Instabilities, MIT Press, Cambridge. Google Scholar
  6. Chae, J.: 2000, The magnetic helicity sign of filament chirality. Astrophys. J. Lett. 540, L115.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Chae, J.: 2003, The formation of a prominence in NOAA active region 8668, II: Trace observations of jets and eruptions associated with canceling magnetic features. Astrophys. J. 584, 1084.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8, 1.  DOI. ADS. ADSCrossRefMathSciNetGoogle Scholar
  9. Chen, H., Zhang, J., Cheng, X., Ma, S., Yang, S., Li, T.: 2014, Direct observations of tether-cutting reconnection during a major solar event from 2014 February 24 to 25. Astrophys. J. Lett. 797, L15.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Chifor, C., Tripathi, D., Mason, H.E., Dennis, B.R.: 2007, X-ray precursors to flares and filament eruptions. Astron. Astrophys. 472, 967.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dhara, S.K., Ravindra, B., Banyal, R.K.: 2014, Observations of photospheric vortical motions during the early stage of filament eruption. Solar Phys. 289, 4481.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Fan, Y., Gibson, S.E.: 2007, Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and re-formation. Solar Phys. 245, 287.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys. J. 586, 562.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Green, L.M., Kliem, B., Wallace, A.J.: 2011, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The global oscillation network group (GONG) project. Science 272, 1284.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Hood, A.W., Priest, E.R.: 1979, Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64, 303.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Kahler, S.W., Moore, R.L., Kane, S.R., Zirin, H.: 1988, Filament eruptions and the impulsive phase of solar flares. Astrophys. J. 328, 824.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Kim, S., Moon, Y.-J., Kim, K.-H., Kim, Y.-H., Sakurai, T., Chae, J., Kim, K.-S.: 2007, Two-step reconnections in a C3.3 flare and its preflare activity observed by Hinode XRT. Pub. Astron. Soc. Japan 59, 831. ADS. CrossRefGoogle Scholar
  24. Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Kumar, P., Cho, K.-S.: 2014, Multiwavelength observation of a large-scale flux rope eruption above a kinked small filament. Astron. Astrophys. 572, A83.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., Kim, Y.H.: 2012, Initiation of coronal mass ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J. 746, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Lee, J., Liu, C., Jing, J., Chae, J.: 2016, Solar multiple eruptions from a confined magnetic structure. Astrophys. J. Lett. 829, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Liewer, P.C., de Jong, E.M., Hall, J.R., Howard, R.A., Thompson, W.T., Culhane, J.L., Bone, L., van Driel-Gesztelyi, L.: 2009, Stereoscopic analysis of the 19 May 2007 erupting filament. Solar Phys. 256, 57.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Liu, R., Wang, H.: 2010, Fast contraction of coronal loops at the flare peak. Astrophys. J. Lett. 714, L41.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Liu, W., Wang, T.-J., Dennis, B.R., Holman, G.D.: 2009, Episodic X-ray emission accompanying the activation of an eruptive prominence: Evidence of episodic magnetic reconnection. Astrophys. J. 698, 632.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/michelson doppler imager. Solar Phys. 279, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Martin, S.F.: 1980, Preflare conditions, changes and events. Solar Phys. 68, 217.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, Magnetic field configurations basic to filament channels and filaments. In: Rutten, R.J., Schrijver, C.J. (eds.) NATO Adv. Sci. Inst. Ser. C 433, 303. ADS. Google Scholar
  37. Martin, S.F., Livi, S.H.B.: 1992, The role of cancelling magnetic fields in the buildup to erupting filaments and flares. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lect. Notes Phys. 399, 33. ADS. CrossRefGoogle Scholar
  38. Martin, S.F., Livi, S.H.B., Wang, J.: 1985, The cancellation of magnetic flux, II: In a decaying active region. Aust. J. Phys. 38, 929. ADS. ADSCrossRefGoogle Scholar
  39. Moore, R.L., Labonte, B.J.: 1980, The filament eruption in the 3B flare of July 29, 1973 – onset and magnetic field configuration. In: Dryer, M., Tandberg-Hanssen, E. (eds.) IAU Symp. 91: Solar and Interplanetary Dynamics, 207. ADS. CrossRefGoogle Scholar
  40. Moore, R.L., Roumeliotis, G.: 1992, Triggering of eruptive flares – destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lect. Notes Phys. 399, 69. ADS. CrossRefGoogle Scholar
  41. Moore, R.L., Sterling, A.C.: 2006, Initiation of coronal mass ejections. AGU Geophys. Monograph Ser. 165, 43. ADS. Google Scholar
  42. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Nagashima, K., Isobe, H., Yokoyama, T., Ishii, T.T., Okamoto, T.J., Shibata, K.: 2007, Triggering mechanism for the filament eruption on 2005 September 13 in NOAA active region 10808. Astrophys. J. 668, 533.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Priest, E.R., Parnell, C.E., Martin, S.F.: 1994, A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys. J. 427, 459.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Schmieder, B., van Driel-Gesztelyi, L., Aulanier, G., Démoulin, P., Thompson, B., de Forest, C., Wiik, J.E., Saint Cyr, C., Vial, J.C.: 2002, Relationships between CME’s and prominences. Adv. Space Res. 29, 1451.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Observation of kink instability during small B5.0 solar flare on 2007 June 4. Astrophys. J. 715, 292.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Sterling, A.C., Harra, L.K., Moore, R.L.: 2007, New evidence for the role of emerging flux in a solar filament’s slow rise preceding its CME-producing fast eruption. Astrophys. J. 669, 1359.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 630, 1148.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Sterling, A.C., Moore, R.L., Freeland, S.L.: 2011, Insights into filament eruption onset from solar dynamics observatory observations. Astrophys. J. Lett. 731, L3.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Sterling, A.C., Chifor, C., Mason, H.E., Moore, R.L., Young, P.R.: 2010, Evidence for magnetic flux cancelation leading to an ejective solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI. Astron. Astrophys. 521, A49.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Toriumi, S., Iida, Y., Bamba, Y., Kusano, K., Imada, S., Inoue, S.: 2013, The magnetic systems triggering the M6.6 class solar flare in NOAA active region 11158. Astrophys. J. 773, 128.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  59. Török, T., Panasenco, O., Titov, V.S., Mikić, Z., Reeves, K.K., Velli, M., Linker, J.A., De Toma, G.: 2011, A model for magnetically coupled sympathetic eruptions. Astrophys. J. Lett. 739, L63.  DOI. ADS. ADSCrossRefGoogle Scholar
  60. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971.  DOI. ADS. ADSCrossRefGoogle Scholar
  61. Wang, J., Shi, Z.: 1993, The flare-associated magnetic changes in an active region. II: Flux emergence and cancellation. Solar Phys. 143, 119.  DOI. ADS. ADSCrossRefGoogle Scholar
  62. Xu, Y., Jing, J., Wang, H.: 2010, Measurements of filament height in H\(\upalpha\) and EUV 304 Å. Solar Phys. 264, 81.  DOI. ADS. ADSCrossRefGoogle Scholar
  63. Yan, X.L., Pan, G.M., Liu, J.H., Qu, Z.Q., Xue, Z.K., Deng, L.H., Ma, L., Kong, D.F.: 2013, The contraction of overlying coronal loop and the rotating motion of a sigmoid filament during its eruption. Astron. J. 145, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  64. Yan, X.L., Xue, Z.K., Liu, J.H., Ma, L., Kong, D.F., Qu, Z.Q., Li, Z.: 2014, Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys. J. 782, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  65. Young, C.A.: 2007, Mkit: An IDL multiscale toolbox. Bull. Amer. Astron. Soc. 39, 133. ADS. ADSGoogle Scholar
  66. Zuccarello, F., Battiato, V., Contarino, L., Romano, P., Spadaro, D.: 2007, Plasma motions in a short-lived filament related to a magnetic flux cancellation. Astron. Astrophys. 468, 299.  DOI. ADS. ADSCrossRefGoogle Scholar
  67. Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys. J. 785, 88.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sajal Kumar Dhara
    • 1
    • 2
  • Ravindra Belur
    • 3
  • Pankaj Kumar
    • 4
    • 5
  • Ravinder Kumar Banyal
    • 3
  • Shibu K. Mathew
    • 1
  • Bhuwan Joshi
    • 1
  1. 1.Udaipur Solar ObservatoryPhysical Research LaboratoryUdaipurIndia
  2. 2.Istituto Ricerche Solari Locarno associated to Università della Svizzera ItalianaLocarno-MontiSwitzerland
  3. 3.Indian Institute of AstrophysicsBangaloreIndia
  4. 4.Korea Astronomy and Space Science Institute (KASI)DaejeonSouth Korea
  5. 5.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations