Solar Physics

, 292:132 | Cite as

Automated Spatiotemporal Analysis of Fibrils and Coronal Rain Using the Rolling Hough Transform

  • Thomas Schad


A technique is presented that automates the direction characterization of curvilinear features in multidimensional solar imaging datasets. It is an extension of the Rolling Hough Transform (RHT) technique presented by Clark, Peek, and Putman (Astrophys. J. 789, 82, 2014), and it excels at rapid quantification of spatial and spatiotemporal feature orientation even for applications with a low signal-to-noise ratio. It operates on a pixel-by-pixel basis within a dataset and reliably quantifies orientation even for locations not centered on a feature ridge, which is used here to derive a quasi-continuous map of the chromospheric fine-structure projection angle. For time-series analysis, a procedure is developed that uses a hierarchical application of the RHT to automatically derive the apparent motion of coronal rain observed off-limb. Essential to the success of this technique is the formulation presented in this article for the RHT error analysis as it provides a means to properly filter results.


Active regions: structure Corona: structures Chromosphere: active Methods: pattern recognition 



The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. IRIS is a NASA Small Explorer Mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre. The author is grateful to Kevin Reardon for providing the IBIS dataset as well as for a careful reading of the manuscript.

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.


  1. Antolin, P., Rouppe van der Voort, L.: 2012, Astrophys. J. 745, 152.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Aschwanden, M.J.: 2010a, Solar Phys. 262, 399.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J.: 2010b, Solar Phys. 262, 235.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Aschwanden, M., De Pontieu, B., Katrukha, E.: 2013, Entropy 15, 3007.  DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  5. Aschwanden, M.J., Reardon, K., Jess, D.B.: 2016, Astrophys. J. 826, 61.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Aschwanden, M.J., Lee, J.K., Gary, G.A., Smith, M., Inhester, B.: 2008a, Solar Phys. 248, 359.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Aschwanden, M.J., Wülser, J.-P., Nitta, N.V., Lemen, J.R.: 2008b, Astrophys. J. 679, 827.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Asensio Ramos, A., Trujillo Bueno, J., Landi Degl’Innocenti, E.: 2008, Astrophys. J. 683, 542.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Asensio Ramos, A., de la Cruz Rodríguez, J., Martínez González, M.J., Socas-Navarro, H.: 2017, Astron. Astrophys. 599, A133.  DOI. ADS. CrossRefGoogle Scholar
  10. Cauzzi, G., Reardon, K.: 2012 In: IAU Special Session 6, E5.11. ADS. Google Scholar
  11. Cavallini, F.: 2006, Solar Phys. 236, 415.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Chen, F., Peter, H., Bingert, S., Cheung, M.C.M.: 2015, Nat. Phys. 11, 492.  DOI. ADS. CrossRefGoogle Scholar
  13. Clark, S.E., Peek, J.E.G., Putman, M.E.: 2014, Astrophys. J. 789, 82.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. de la Cruz Rodríguez, J., Socas-Navarro, H.: 2011, Astron. Astrophys. 527, L8.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, Solar Phys. 289, 2733.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Duda, R.O., Hart, P.E.: 1972, Commun. ACM 15(1), 11.  DOI. CrossRefGoogle Scholar
  17. Fisher, N.I.: 1995, Statistical Analysis of Circular Data, Statistical Analysis of Circular Data. Cambridge University Press, Cambridge ISBN 9780521568906. Google Scholar
  18. Fisher, N.I., Lewis, T.: 1983, Biometrika 70(2), 333. MathSciNetCrossRefGoogle Scholar
  19. Gissot, S.F., Hochedez, J.-F.: 2007, Astron. Astrophys. 464, 1107.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, Solar Phys. 187, 229.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Hough, P.V.C.: 1959 In: Proceedings, 2nd International Conference on High-Energy Accelerators and Instrumentation, HEACC 1959: CERN, Geneva, Switzerland, September 14 – 19, 1959, C590914, 554. Google Scholar
  22. Hough, P.V.C.: 1962, Method and means for recognizing complex patterns. US Patent. Google Scholar
  23. Inhester, B., Feng, L., Wiegelmann, T.: 2008, Solar Phys. 248, 379.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Jeltsch, M., Dalitz, C., Pohle-Fröhlich, R.: 2016, Hough parameter space regularisation for line detection in 3d. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 345. INSTICC. ISBN 978-989-758-175-5.  DOI. CrossRefGoogle Scholar
  25. Jing, J., Yuan, Y., Reardon, K., Wiegelmann, T., Xu, Y., Wang, H.: 2011, Astrophys. J. 739, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Kovesi, P.: 2015, ArXiv e-prints. ADS.
  27. Krumbein, W.C.: 1939, J. Geol. 47(7), 673. ADSCrossRefGoogle Scholar
  28. Lee, J.K., Newman, T.S., Gary, G.A.: 2006a In: 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, 91.  DOI. Google Scholar
  29. Lee, J.K., Newman, T.S., Gary, G.A.: 2006b, Pattern Recognit. 39(2), 246. Part Special Issue: Complexity Reduction.  DOI. CrossRefGoogle Scholar
  30. Leenaarts, J., Carlsson, M., Rouppe van der Voort, L.: 2015, Astrophys. J. 802, 136.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, Solar Phys. 275(1 – 2), 17. ADSCrossRefGoogle Scholar
  32. Lucas, B., Kanade, T.: 1981 In: Proceedings of the 1981 DARPA Image Understanding Workshop, 121. Google Scholar
  33. Mardia, K.V., Jupp, P.E.: 1999, Directional Statistics, 1st edn., Wiley Series in Probability and Statistics. Wiley, New York.  DOI. CrossRefzbMATHGoogle Scholar
  34. Mukhopadhyay, P., Chaudhuri, B.B.: 2015, Pattern Recognit. 48(3), 993.  DOI. CrossRefGoogle Scholar
  35. November, L.J., Simon, G.W.: 1988, Astrophys. J. 333, 427.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Ożarowska, A., Ilieva, M., Zehtindjiev, P., Åkesson, S., Muś, K.: 2013, J. Exp. Biol. 216(21), 4038.  DOI. CrossRefGoogle Scholar
  37. Reardon, K.P., Cavallini, F.: 2008, Astron. Astrophys. 481, 897.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Schad, T.A., Penn, M.J., Lin, H.: 2013, Astrophys. J. 768, 111.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Schad, T.A., Penn, M.J., Lin, H., Tritschler, A.: 2015, Solar Phys. 290, 1607.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Steger, C.: 1996 In: Proceedings of 13th International Conference on Pattern Recognition 2, 251.  DOI. CrossRefGoogle Scholar
  41. Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, Astrophys. J. 610, 1148.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Wiegelmann, T., Thalmann, J.K., Schrijver, C.J., De Rosa, M.L., Metcalf, T.R.: 2008, Solar Phys. 247, 249.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.National Solar ObservatoryPukalaniUSA

Personalised recommendations