Advertisement

Solar Physics

, 292:100 | Cite as

Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review)

  • Jaroslav Dudík
  • Elena Dzifčáková
  • Nicole Meyer-Vernet
  • Giulio Del Zanna
  • Peter R. Young
  • Alessandra Giunta
  • Barbara Sylwester
  • Janusz Sylwester
  • Mitsuo Oka
  • Helen E. Mason
  • Christian Vocks
  • Lorenzo Matteini
  • Säm Krucker
  • David R. Williams
  • Šimon Mackovjak
Invited Review

Abstract

We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modeling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for the detection of these non-equilibrium phenomena in various spectral ranges.

Keywords

Energetic particles, Electrons Flares, Energetic particles Spectral line, Theory Spectral line, Intensity and diagnostics Solar wind, Theory Spectrum, X-ray 

Notes

Acknowledgements

The authors thank the anonymous referee for numerous improvements to the manuscript. The authors also acknowledge useful discussions with M. Battaglia, P. Heinzel and A. Zemanová. J.D. and E.Dz. authors acknowledge support by Grant Agency of the Czech Republic, Grant No. 17-16447S, and institutional support RVO:67985815 from the Czech Academy of Sciences. G.D.Z. and H.E.M. acknowledge funding from STFC. J.D., G.D.Z., and H.E.M. acknowledge funding from Royal Society via the Newton Alumni programme. P.R.Y. acknowledges support from NASA grant NNX15AF25G. A.G. acknowledges the in-house research support provided by the STFC. B.S. and J.S. acknowledge support from the Polish National Science Centre grant 2013/11/B/ST9/00234. M.O. was supported by NASA grant NNX08AO83G at UC Berkeley. L.M. was supported by the UK Science and Technology Facilities Council grant ST/K001051/1. The authors benefited greatly from participation in the International Team 276 funded by the International Space Science Institute (ISSI) in Bern, Switzerland. CHIANTI is a collaborative project involving the University of Cambridge (UK), the George Mason University (USA), and the University of Michigan (USA). ADAS is a project managed at the University of Strathclyde (UK) and funded through memberships universities and astrophysics and fusion laboratories in Europe and worldwide.

References

  1. Acton, L.W., Finch, M.L., Gilbreth, C.W., Culhane, J.L., Bentley, R.D., Bowles, J.A., Guttridge, P., Gabriel, A.H., Firth, J.G., Hayes, R.W.: 1980, The soft X-ray polychromator for the Solar Maximum Mission. Solar Phys. 65, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, A unified computational model for solar and stellar flares. Astrophys. J. 809, 104.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Antiochos, S.K., MacNeice, P.J., Spicer, D.S., Klimchuk, J.A.: 1999, The dynamic formation of prominence condensations. Astrophys. J. 512, 985.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Antonucci, E., Gabriel, A.H., Doyle, J.G., Dubau, J., Faucher, P., Jordan, C., Veck, N.: 1984, Derivation of ionization balance for calcium XVIII/XIX using XRP solar X-ray data. Astron. Astrophys. 133, 239. ADS. ADSGoogle Scholar
  5. Arnaud, M., Raymond, J.: 1992, Iron ionization and recombination rates and ionization equilibrium. Astrophys. J. 398, 394.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Arnaud, M., Rothenflug, R.: 1985, An updated evaluation of recombination and ionization rates. Astron. Astrophys. Suppl. 60, 425. ADS. ADSGoogle Scholar
  7. Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn., Springer, Berlin. ADS. Google Scholar
  8. Badnell, N.R.: 2006, Radiative recombination data for modeling dynamic finite-density plasmas. Astrophys. J. Suppl. 167, 334.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Badnell, N.R., O’Mullane, M.G., Summers, H.P., Altun, Z., Bautista, M.A., Colgan, J., Gorczyca, T.W., Mitnik, D.M., Pindzola, M.S., Zatsarinny, O.: 2003, Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology. Astron. Astrophys. 406, 1151.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Bale, S.D., Goetz, K., Harvey, P.R., Turin, P., Bonnell, J.W., Dudok de Wit, T., Ergun, R.E., MacDowall, R.J., Pulupa, M., Andre, M., Bolton, M., Bougeret, J.-L., Bowen, T.A., Burgess, D., Cattell, C.A., Chandran, B.D.G., Chaston, C.C., Chen, C.H.K., Choi, M.K., Connerney, J.E., Cranmer, S., Diaz-Aguado, M., Donakowski, W., Drake, J.F., Farrell, W.M., Fergeau, P., Fermin, J., Fischer, J., Fox, N., Glaser, D., Goldstein, M., Gordon, D., Hanson, E., Harris, S.E., Hayes, L.M., Hinze, J.J., Hollweg, J.V., Horbury, T.S., Howard, R.A., Hoxie, V., Jannet, G., Karlsson, M., Kasper, J.C., Kellogg, P.J., Kien, M., Klimchuk, J.A., Krasnoselskikh, V.V., Krucker, S., Lynch, J.J., Maksimovic, M., Malaspina, D.M., Marker, S., Martin, P., Martinez-Oliveros, J., McCauley, J., McComas, D.J., McDonald, T., Meyer-Vernet, N., Moncuquet, M., Monson, S.J., Mozer, F.S., Murphy, S.D., Odom, J., Oliverson, R., Olson, J., Parker, E.N., Pankow, D., Phan, T., Quataert, E., Quinn, T., Ruplin, S.W., Salem, C., Seitz, D., Sheppard, D.A., Siy, A., Stevens, K., Summers, D., Szabo, A., Timofeeva, M., Vaivads, A., Velli, M., Yehle, A., Werthimer, D., Wygant, J.R.: 2016, The FIELDS instrument suite for Solar Probe Plus – measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci. Rev. 204, 49.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Bartiromo, R., Bombarda, F., Giannella, R.: 1985, Spectroscopic study of nonthermal plasmas. Phys. Rev. A 32, 531.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Battaglia, M., Benz, A.O.: 2006, Relations between concurrent hard X-ray sources in solar flares. Astron. Astrophys. 456, 751.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Battaglia, M., Kontar, E.P.: 2013, Electron distribution functions in solar flares from combined X-ray and extreme-ultraviolet observations. Astrophys. J. 779, 107.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Battaglia, M., Motorina, G., Kontar, E.P.: 2015, Multithermal representation of the kappa-distribution of solar flare electrons and application to simultaneous X-ray and EUV observations. Astrophys. J. 815, 73.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Beck, A., Meyer-Vernet, N.: 2008, The trajectory of an electron in a plasma. Am. J. Phys. 76, 934.  DOI. ADSCrossRefGoogle Scholar
  16. Benáček, J., Karlický, M., Yasnov, L.V.: 2017, Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns. Astron. Astrophys. 598, A106.  DOI. ADS, 6 pp. CrossRefGoogle Scholar
  17. BenMoussa, A., Gissot, S., Schühle, U., Del Zanna, G., Auchère, F., Mekaoui, S., Jones, A.R., Walton, D., Eyles, C.J., Thuillier, G., Seaton, D., Dammasch, I.E., Cessateur, G., Meftah, M., Andretta, V., Berghmans, D., Bewsher, D., Bolsée, D., Bradley, L., Brown, D.S., Chamberlin, P.C., Dewitte, S., Didkovsky, L.V., Dominique, M., Eparvier, F.G., Foujols, T., Gillotay, D., Giordanengo, B., Halain, J.P., Hock, R.A., Irbah, A., Jeppesen, C., Judge, D.L., Kretzschmar, M., McMullin, D.R., Nicula, B., Schmutz, W., Ucker, G., Wieman, S., Woodraska, D., Woods, T.N.: 2013, On-orbit degradation of solar instruments. Solar Phys. 288, 389.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Benz, A., Krucker, S., Hurford, G.J., Arnold, N.G., Orleanski, P., Gröbelbauer, H.-P., et al.: 2012, The spectrometer telescope for imaging X-rays on board the Solar Orbiter mission. Proc. SPIE 8443, 84433L.  DOI. ADS. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. CrossRefGoogle Scholar
  19. Benz, A.O.: 2008, Flare observations. Living Rev. Solar Phys. 5, 1.  DOI. ADSCrossRefGoogle Scholar
  20. Bian, N.H., Kontar, E.P.: 2013, Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection. Phys. Rev. Lett. 110(15), 151101.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Bian, N.H., Emslie, A.G., Stackhouse, D.J., Kontar, E.P.: 2014, The formation of kappa-distribution accelerated electron populations in solar flares. Astrophys. J. 796, 142.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P., Weber, M.: 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 41.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Bogachev, S.A., Somov, B.V.: 2005, Comparison of the Fermi and betatron acceleration efficiencies in collapsing magnetic traps. Astron. Lett. 31, 537.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Borrini, G., Noci, G.: 1982, Non-equilibrium ionization in coronal loops. Solar Phys. 77, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Bradshaw, S.J., Cargill, P.J.: 2006, Explosive heating of low-density coronal plasma. Astron. Astrophys. 458, 987.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Bradshaw, S.J., Klimchuk, J.A.: 2011, What dominates the coronal emission spectrum during the cycle of impulsive heating and cooling? Astrophys. J. Suppl. 194, 26.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Bradshaw, S.J., Mason, H.E.: 2003a, A self-consistent treatment of radiation in coronal loop modelling. Astron. Astrophys. 401, 699.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Bradshaw, S.J., Mason, H.E.: 2003b, The radiative response of solar loop plasma subject to transient heating. Astron. Astrophys. 407, 1127.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Bradshaw, S.J., Raymond, J.: 2013, Collisional and radiative processes in optically thin plasmas. Space Sci. Rev. 178, 271.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Bradshaw, S.J., Aulanier, G., Del Zanna, G.: 2011, A reconnection-driven rarefaction wave model for coronal outflows. Astrophys. J. 743, 66.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Bradshaw, S.J., Del Zanna, G., Mason, H.E.: 2004, On the consequences of a non-equilibrium ionisation balance for compact flare emission and dynamics. Astron. Astrophys. 425, 287. ADS. ADSCrossRefGoogle Scholar
  32. Bradshaw, S.J., Klimchuk, J.A., Reep, J.W.: 2012, Diagnosing the time-dependence of active region core heating from the emission measure. I. Low-frequency nanoflares. Astrophys. J. 758, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Bryans, P.: 2006, On the spectral emission of non-Maxwellian plasmas. Ph.D. thesis, University of Strathclyde. ADS.
  35. Bryans, P., Landi, E., Savin, D.W.: 2009, A new approach to analyzing solar coronal spectra and updated collisional ionization equilibrium calculations. II. Updated ionization rate coefficients. Astrophys. J. 691, 1540.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Burge, C.A., MacKinnon, A.L., Petkaki, P.: 2014, Effect of binary collisions on electron acceleration in magnetic reconnection. Astron. Astrophys. 561, A107.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Burge, C.A., Petkaki, P., MacKinnon, A.L.: 2012, Particle acceleration in the presence of weak turbulence at an X-type neutral point. Solar Phys. 280, 575.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Bykov, A.M., Malkov, M.A., Raymond, J.C., Krassilchtchikov, A.M., Vladimirov, A.E.: 2013, Collisionless shocks in partly ionized plasma with cosmic rays: Microphysics of non-thermal components. Space Sci. Rev. 178, 599.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Cargill, P.J.: 2014, Active region emission measure distributions and implications for nanoflare heating. Astrophys. J. 784, 49.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Cargill, P.J., Vlahos, L., Baumann, G., Drake, J.F., Nordlund, Å.: 2012, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. 173, 223.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Carlsson, M., Hansteen, V.H., Gudiksen, B.V., Leenaarts, J., De Pontieu, B.: 2016, A publicly available simulation of an enhanced network region of the Sun. Astron. Astrophys. 585, A4.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Caspi, A., Lin, R.P.: 2010, RHESSI line and continuum observations of super-hot flare plasma. Astrophys. J. Lett. 725, L161.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Caspi, A., Krucker, S., Lin, R.P.: 2014, Statistical properties of super-hot solar flares. Astrophys. J. 781, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Chateau, Y.F., Meyer-Vernet, N.: 1991, Electrostatic noise in non-Maxwellian plasmas – generic properties and ‘kappa’ distributions. J. Geophys. Res. 96, 5825.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Che, H., Goldstein, M.L.: 2014, The origin of non-Maxwellian solar wind electron velocity distribution function: Connection to nanoflares in the solar corona. Astrophys. J. Lett. 795, L38.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Chen, H., Gu, M.F., Behar, E., Brown, G.V., Kahn, S.M., Beiersdorfer, P.: 2007, Laboratory measurements of high-\(n\) iron L-Shell X-ray lines. Astrophys. J. Suppl. 168, 319.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Chen, Q., Petrosian, V.: 2012, Impulsive phase coronal hard X-ray sources in an X3.9 class solar flare. Astrophys. J. 748, 33.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Chew, G.F., Goldberger, M.L., Low, F.E.: 1956, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 236, 112.  DOI. ADS. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. Chiuderi, C., Chiuderi Drago, F.: 2004, Effect of suprathermal particles on the quiet Sun radio emission. Astron. Astrophys. 422, 331.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Collier, M.R.: 2004, Are magnetospheric suprathermal particle distributions (\(\kappa\) functions) inconsistent with maximum entropy considerations? Adv. Space Res. 33, 2108.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Cranmer, S.R.: 2014, Suprathermal electrons in the solar corona: Can nonlocal transport explain heliospheric charge states? Astrophys. J. Lett. 791, L31.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Cranmer, S.R., Matthaeus, W.H., Breech, B.A., Kasper, J.C.: 2009, Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 1604.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Culhane, J.L., Hiei, E., Doschek, G.A., Cruise, A.M., et al.: 1991, The Bragg crystal spectrometer for SOLAR-A. Solar Phys. 136, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Curdt, W., Brekke, P., Feldman, U., Wilhelm, K., Dwivedi, B.N., Schühle, U., Lemaire, P.: 2001, The SUMER spectral atlas of solar-disk features. Astron. Astrophys. 375, 591.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezoijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733.  DOI. ADS. ADSCrossRefGoogle Scholar
  59. De Pontieu, B., McIntosh, S., Martinez-Sykora, J., Peter, H., Pereira, T.M.D.: 2015, Why is non-thermal line broadening of spectral lines in the lower transition region of the sun independent of spatial resolution? Astrophys. J. Lett. 799, L12.  DOI. ADS. ADSCrossRefGoogle Scholar
  60. Del Zanna, G.: 2008, Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49.  DOI. ADS. ADSCrossRefGoogle Scholar
  61. Del Zanna, G.: 2013, A revised radiometric calibration for the Hinode/EIS instrument. Astron. Astrophys. 555, A47.  DOI. ADS. ADSCrossRefGoogle Scholar
  62. Del Zanna, G., Mason, H.E.: 2003, Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops. Astron. Astrophys. 406, 1089.  DOI. ADS. ADSCrossRefGoogle Scholar
  63. Del Zanna, G., Mason, H.E.: 2014, Elemental abundances and temperatures of quiescent solar active region cores from X-ray observations. Astron. Astrophys. 565, A14.  DOI. ADS. CrossRefGoogle Scholar
  64. Del Zanna, G., Fernández-Menchero, L., Badnell, N.R.: 2015, Benchmarking atomic data for astrophysics: Si iii. Astron. Astrophys. 574, A99.  DOI. ADS. CrossRefGoogle Scholar
  65. Del Zanna, G., Landini, M., Mason, H.E.: 2002, Spectroscopic diagnostics of stellar transition regions and coronae in the XUV: AU Mic in quiescence. Astron. Astrophys. 385, 968. ADSCrossRefGoogle Scholar
  66. Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: 2011a, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137.  DOI. ADS. CrossRefGoogle Scholar
  67. Del Zanna, G., Mitra-Kraev, U., Bradshaw, S.J., Mason, H.E., Asai, A.: 2011b, The 22 May 2007 B-class flare: New insights from Hinode observations. Astron. Astrophys. 526, A1.  DOI. ADS. CrossRefGoogle Scholar
  68. Del Zanna, G., Storey, P.J., Badnell, N.R., Mason, H.E.: 2012, Atomic data for astrophysics: Fe XII soft X-ray lines. Astron. Astrophys. 543, A139.  DOI. ADS. CrossRefGoogle Scholar
  69. Del Zanna, G., Storey, P.J., Badnell, N.R., Mason, H.E.: 2014, Atomic data for astrophysics: Fe ix. Astron. Astrophys. 565, A77.  DOI. ADS. CrossRefGoogle Scholar
  70. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015a, CHIANTI – an atomic database for emission lines. Version 8. Astron. Astrophys. 582, A56.  DOI. ADS. CrossRefGoogle Scholar
  71. Del Zanna, G., Tripathi, D., Mason, H., Subramanian, S., O’Dwyer, B.: 2015b, The evolution of the emission measure distribution in the core of an active region. Astron. Astrophys. 573, A104.  DOI. ADS. CrossRefGoogle Scholar
  72. Dere, K.P.: 2007, Ionization rate coefficients for the elements hydrogen through zinc. Astron. Astrophys. 466, 771.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149.  DOI. ADS. ADSCrossRefGoogle Scholar
  74. Doschek, G.A., Feldman, U.: 1981, On ionization equilibrium in solar flares as determined from X-ray emission lines of Ca xviii and Ca xix. Astrophys. J. 251, 792.  DOI. ADS. ADSCrossRefGoogle Scholar
  75. Doschek, G.A., Tanaka, K.: 1987, Transient ionization and solar flare X-ray spectra. Astrophys. J. 323, 799.  DOI. ADS. ADSCrossRefGoogle Scholar
  76. Doschek, G.A., Kreplin, R.W., Feldman, U.: 1979, High-resolution solar flare X-ray spectra. Astrophys. J. Lett. 233, L157. ADS. ADSCrossRefGoogle Scholar
  77. Doschek, G.A., Warren, H.P., Dennis, B.R., Reep, J.W., Caspi, A.: 2015, Flare footpoint regions and a surge observed by Hinode/EIS, RHESSI, and SDO/AIA. Astrophys. J. 813, 32.  DOI. ADS. ADSCrossRefGoogle Scholar
  78. Doyle, J.G., Raymond, J.C.: 1981, New ionization fractions for the lithium- and helium-like ionization stages of calcium and iron. Mon. Not. Roy. Astron. Soc. 196, 907.  DOI. ADS. ADSCrossRefGoogle Scholar
  79. Doyle, J.G., Raymond, J.C.: 1984, Flare parameters for the 7 September, 1973 two-ribbon flare. Solar Phys. 90, 97.  DOI. ADS. ADSCrossRefGoogle Scholar
  80. Doyle, J.G., Madjarska, M.S., Dzifčáková, E., Dammasch, I.E.: 2004, Coronal response of bi-directional jets. Solar Phys. 221, 51.  DOI. ADS. ADSCrossRefGoogle Scholar
  81. Doyle, J.G., Giunta, A., Singh, A., Madjarska, M.S., Summers, H., Kellett, B.J., O’Mullane, M.: 2012, The diagnostic potential of transition region lines undergoing transient ionization in dynamic events. Solar Phys. 280, 111.  DOI. ADS. ADSCrossRefGoogle Scholar
  82. Doyle, J.G., Giunta, A., Madjarska, M.S., Summers, H., O’Mullane, M., Singh, A.: 2013, Diagnosing transient ionization in dynamic events. Astron. Astrophys. 557, L9.  DOI. ADS. ADSCrossRefGoogle Scholar
  83. Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: 2006, Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553.  DOI. ADSCrossRefGoogle Scholar
  84. Dudík, J., Dzifčáková, E., Karlický, M., Kulinová, A.: 2011, The bound–bound and free–free radiative losses for the nonthermal distributions in solar and stellar coronae. Astron. Astrophys. 529, A103.  DOI. ADS. CrossRefGoogle Scholar
  85. Dudík, J., Kašparová, J., Dzifčáková, E., Karlický, M., Mackovjak, Š.: 2012, The non-Maxwellian continuum in the X-ray, UV, and radio range. Astron. Astrophys. 539, A107.  DOI. ADS. CrossRefGoogle Scholar
  86. Dudík, J., Del Zanna, G., Mason, H.E., Dzifčáková, E.: 2014a, Signatures of the non-Maxwellian \(\kappa\)-distributions in optically thin line spectra. I. Theory and synthetic Fe ix – xiii spectra. Astron. Astrophys. 570, A124.  DOI. ADS. CrossRefGoogle Scholar
  87. Dudík, J., Del Zanna, G., Dzifčáková, E., Mason, H.E., Golub, L.: 2014b, Solar transition region lines observed by the interface region imaging spectrograph: Diagnostics for the O iv and Si iv lines. Astrophys. J. Lett. 780, L12.  DOI. ADS. ADSCrossRefGoogle Scholar
  88. Dudík, J., Mackovjak, Š., Dzifčáková, E., Del Zanna, G., Williams, D.R., Karlický, M., Mason, H.E., Lörinčík, J., Kotrč, P., Fárník, F., Zemanová, A.: 2015, Imaging and spectroscopic observations of a transient coronal loop: Evidence for the non-Maxwellian \(kappa\)-distributions. Astrophys. J. 807, 123.  DOI. ADS. ADSCrossRefGoogle Scholar
  89. Dufton, P.L., Kingston, A.E., Keenan, F.P.: 1984, Observational evidence for non-Maxwellian electron energy distributions in the solar transition region. Astrophys. J. Lett. 280, L35.  DOI. ADS. ADSCrossRefGoogle Scholar
  90. Duijveman, A., Hoyng, P., Machado, M.E.: 1982, X-ray imaging of three flares during the impulsive phase. Solar Phys. 81, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  91. Dupree, A.K.: 1968, The population of high atomic levels in the solar corona. Astrophys. J. 152, L125.  DOI. ADSCrossRefGoogle Scholar
  92. Dupree, A.K., Moore, R.T., Shapiro, P.R.: 1979, Nonequilibrium ionization in solar and stellar winds. Astrophys. J. Lett. 229, L101.  DOI. ADS. ADSCrossRefGoogle Scholar
  93. Dzifčáková, E.: 1992, The ionization balance of the Fe in the solar corona for a non-Maxwellian electron distribution function. Solar Phys. 140, 247.  DOI. ADS. ADSCrossRefGoogle Scholar
  94. Dzifčáková, E.: 1998, The ionization equilibrium in the solar corona for the electron power distribution. Solar Phys. 178, 317.  DOI. ADS. ADSCrossRefGoogle Scholar
  95. Dzifčáková, E.: 2002, The updated Fe ionization equilibrium for the electron \(\kappa\)-distributions. Solar Phys. 208, 91. ADS. ADSCrossRefGoogle Scholar
  96. Dzifčáková, E.: 2006, The influence of the electron \(\kappa\)-distribution in the solar corona on the Fe viii – Fe xv line intensities. Solar Phys. 234, 243.  DOI. ADS. ADSCrossRefGoogle Scholar
  97. Dzifčáková, E., Dudík, J.: 2013, H to Zn ionization equilibrium for the non-Maxwellian electron \(\kappa\)-distributions: Updated calculations. Astrophys. J. Suppl. 206, 6.  DOI. ADS. ADSCrossRefGoogle Scholar
  98. Dzifčáková, E., Dudík, J.: 2015, Ionisation equilibrium for the non-Maxwellian electron \(n\)-distributions in solar flares: Updated calculations. Solar Phys. 290, 3545.  DOI. ADS. ADSCrossRefGoogle Scholar
  99. Dzifčáková, E., Kulinová, A.: 2001, The Fe XXV excitation equilibrium in the solar corona for the electron power distributions using a pseudo-temperature. Solar Phys. 203, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  100. Dzifčáková, E., Kulinová, A.: 2010, The diagnostics of the Kappa-distributions from EUV spectra. Solar Phys. 263, 25. ADSCrossRefGoogle Scholar
  101. Dzifčáková, E., Kulinová, A.: 2011, Diagnostics of the \(\kappa\)-distribution using Si iii lines in the solar transition region. Astron. Astrophys. 531, A122.  DOI. ADS. CrossRefGoogle Scholar
  102. Dzifčáková, E., Mason, H.E.: 2008, Computation of non-Maxwellian electron excitation rates for ions of astrophysical interest: Fe XV – a test case. Solar Phys. 247, 301. ADSCrossRefGoogle Scholar
  103. Dzifčáková, E., Tóthová, D.: 2007, Synthetic spectra of the Fe viii – Fe xvi emission lines for electron non-thermal distributions. Solar Phys. 240, 211.  DOI. ADS. ADSCrossRefGoogle Scholar
  104. Dzifčáková, E., Dudík, J., Mackovjak, Š.: 2016, Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations. Astron. Astrophys. 589, A68.  DOI. ADS. CrossRefGoogle Scholar
  105. Dzifčáková, E., Homola, M., Dudík, J.: 2011, The ionization equilibrium and flare line spectra for the electron distribution with a power-law tail. Astron. Astrophys. 531, A111.  DOI. ADS. CrossRefGoogle Scholar
  106. Dzifčáková, E., Karlický, M., Dudík, J.: 2013, Dielectronic satellite lines and double layers in solar flares. Astron. Astrophys. 550, A60.  DOI. ADS. CrossRefGoogle Scholar
  107. Dzifčáková, E., Kulinová, A., Kašparová, J.: 2011, The Diagnostics of the Shape of the Electron Distribution Function during the Solar Flares. In: Johns-Krull, C., Browning, M.K., West, A.A. (eds.) 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Astronomical Society of the Pacific Conference Series 448, 1095. ADS. Google Scholar
  108. Dzifčáková, E., Kulinová, A., Chifor, C., Mason, H.E., Del Zanna, G., Sylwester, J., Sylwester, B.: 2008, Nonthermal and thermal diagnostics of a solar flare observed with RESIK and RHESSI. Astron. Astrophys. 488, 311.  DOI. ADS. ADSCrossRefGoogle Scholar
  109. Dzifčáková, E., Dudík, J., Kotrč, P., Fárník, F., Zemanová, A.: 2015, KAPPA: A package for synthesis of optically thin spectra for the non-Maxwellian \(\kappa\)-distributions based on the Chianti database. Astrophys. J. Suppl. 217, 14.  DOI. ADS. ADSCrossRefGoogle Scholar
  110. Edgar, R.J., Esser, R.: 2000, Nonequilibrium ionization and first ionization potential effect diagnostics. Astrophys. J. Lett. 538, L167.  DOI. ADS. ADSCrossRefGoogle Scholar
  111. Esser, R., Edgar, R.J.: 2000, Reconciling spectroscopic electron temperature measurements in the solar corona with in situ charge state observations. Astrophys. J. Lett. 532, L71.  DOI. ADS. ADSCrossRefGoogle Scholar
  112. Feldman, U., Landi, E., Doschek, G.A.: 2007, Diagnostics of suprathermal electrons in active-region plasmas using He-like UV lines. Astrophys. J. 660, 1674.  DOI. ADS. ADSCrossRefGoogle Scholar
  113. Fernández-Menchero, L., Del Zanna, G., Badnell, N.R.: 2016, Scaling of collision strengths for highly-excited states of ions of the H- and He-like sequences. Astron. Astrophys. 592, A135.  DOI. ADS. CrossRefGoogle Scholar
  114. Fleishman, G.D., Kuznetsov, A.A.: 2014, Theory of gyroresonance and free–free emissions from non-Maxwellian quasi-steady-state electron distributions. Astrophys. J. 781, 77.  DOI. ADS. ADSCrossRefGoogle Scholar
  115. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19.  DOI. ADS. ADSCrossRefGoogle Scholar
  116. Fludra, A., Griffin, D., Caldwell, M., Eccleston, P., Cornaby, J., Drummond, D., Grainger, W., Greenway, P., Grundy, T., Howe, C., McQuirk, C., Middleton, K., Poyntz-Wright, O., Richards, A., Rogers, K., Sawyer, C., Shaughnessy, B., Sidher, S., Tosh, I., Beardsley, S., Burton, G., Marshall, A., Waltham, N., Woodward, S., Appourchaux, T., Philippon, A., Auchere, F., Buchlin, E., Gabriel, A., Vial, J.-C., Schühle, U., Curdt, W., Innes, D., Meining, S., Peter, H., Solanki, S., Teriaca, L., Gyo, M., Büchel, V., Haberreiter, M., Pfiffner, D., Schmutz, W., Carlsson, M., Haugan, S.V., Davila, J., Jordan, P., Thompson, W., Hassler, D., Walls, B., Deforest, C., Hanley, J., Johnson, J., Phelan, P., Blecha, L., Cottard, H., Paciotti, G., Autissier, N., Allemand, Y., Relecom, K., Munro, G., Butler, A., Klein, R., Gottwald, A.: 2013, SPICE EUV spectrometer for the Solar Orbiter mission. In: Solar Physics and Space Weather Instrumentation V, Proc. SPIE 8862, 88620F.  DOI. ADS. CrossRefGoogle Scholar
  117. Gabriel, A.H.: 1972, Dielectronic satellite spectra for highly-charged helium-like ion lines. Mon. Not. Roy. Astron. Soc. 160, 99.  DOI. ADS. ADSCrossRefGoogle Scholar
  118. Gabriel, A.H., Phillips, K.J.H.: 1979, Dielectronic satellite spectra for highly charged helium-like ions. IV – iron satellite lines as a measure of non-thermal electron energy distributions. Mon. Not. Roy. Astron. Soc. 189, 319. ADS. ADSCrossRefGoogle Scholar
  119. Gabriel, A.H., Antonucci, E., Steenman-Clark, L.: 1983, Non-thermal and non-equilibrium effects in soft X-ray flare spectra. Solar Phys. 86, 59.  DOI. ADS. ADSCrossRefGoogle Scholar
  120. Galloway, R.K., Helander, P., MacKinnon, A.L., Brown, J.C.: 2010, Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons. Astron. Astrophys. 520, A72.  DOI. ADS. ADSCrossRefGoogle Scholar
  121. Garrett, B.H.: 1981, The charging of spacecraft surfaces (paper 1R1000). Rev. Geophys. Space Phys. 19, 577.  DOI. ADS. ADSCrossRefGoogle Scholar
  122. Giuliani, P., Neukirch, T., Wood, P.: 2005, Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. Astrophys. J. 635, 636.  DOI. ADS. ADSCrossRefGoogle Scholar
  123. Giunta, A.S., Henderson, S., O’Mullane, M., Harrison, J., Doyle, J.G., Summers, H.P.: 2016, Diagnosing transient plasma status: from solar atmosphere to tokamak divertor. J. Instrum. 11, C09008.  DOI. ADS. CrossRefGoogle Scholar
  124. Golding, T.P., Carlsson, M., Leenaarts, J.: 2014, Detailed and simplified nonequilibrium helium ionization in the solar atmosphere. Astrophys. J. 784, 30.  DOI. ADS. ADSCrossRefGoogle Scholar
  125. Golding, T.P., Leenaarts, J., Carlsson, M.: 2016, Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere. Astrophys. J. 817, 125.  DOI. ADS. ADSCrossRefGoogle Scholar
  126. Golub, L., Hartquist, T.W., Quillen, A.C.: 1989, Comments on the observability of coronal variations. Solar Phys. 122, 245.  DOI. ADS. ADSCrossRefGoogle Scholar
  127. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode Mission. Solar Phys. 243, 63.  DOI. ADS. ADSCrossRefGoogle Scholar
  128. Gordovskyy, M., Browning, P.K., Kontar, E.P., Bian, N.H.: 2013, Effect of collisions and magnetic convergence on electron acceleration and transport in reconnecting twisted solar flare loops. Solar Phys. 284, 489.  DOI. ADS. ADSCrossRefGoogle Scholar
  129. Gordovskyy, M., Browning, P.K., Kontar, E.P., Bian, N.H.: 2014, Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere. Astron. Astrophys. 561, A72.  DOI. ADS. ADSCrossRefGoogle Scholar
  130. Graham, D.R., Fletcher, L., Hannah, I.G.: 2011, Hinode/EIS plasma diagnostics in the flaring solar chromosphere. Astron. Astrophys. 532, A27.  DOI. ADS. ADSCrossRefGoogle Scholar
  131. Graham, D.R., Fletcher, L., Labrosse, N.: 2015, Determining energy balance in the flaring chromosphere from oxygen V line ratios. Astron. Astrophys. 584, A6.  DOI. ADS. ADSCrossRefGoogle Scholar
  132. Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Antiochos, S.K.: 2011, Constraints on coronal mass ejection evolution from in situ observations of ionic charge states. Astrophys. J. 730, 103.  DOI. ADS. ADSCrossRefGoogle Scholar
  133. Gu, M.F.: 2003, Radiative recombination rate coefficients for bare through F-like isosequences of Mg, Si, S, Ar, Ca, Fe, and Ni. Astrophys. J. 589, 1085.  DOI. ADS. ADSCrossRefGoogle Scholar
  134. Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora, J.: 2011, The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, A154.  DOI. ADS. ADSCrossRefGoogle Scholar
  135. Guo, F., Giacalone, J.: 2012, Particle acceleration at a flare termination shock: Effect of large-scale magnetic turbulence. Astrophys. J. 753, 28.  DOI. ADS. ADSCrossRefGoogle Scholar
  136. Hahn, M., Savin, D.W.: 2015, A simple method for modeling collision processes in plasmas with a kappa energy distribution. Astrophys. J. 809, 178.  DOI. ADS. ADSCrossRefGoogle Scholar
  137. Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146.  DOI. ADS. ADSCrossRefGoogle Scholar
  138. Hannah, I.G., Kontar, E.P.: 2013, Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys. 553, A10.  DOI. ADS. ADSCrossRefGoogle Scholar
  139. Hannah, I.G., Hudson, H.S., Hurford, G.J., Lin, R.P.: 2010, Constraining the hard X-ray properties of the quiet sun with new RHESSI observations. Astrophys. J. 724, 487.  DOI. ADS. ADSCrossRefGoogle Scholar
  140. Hannah, I.G., Hudson, H.S., Battaglia, M., Christe, S., Kašparová, J., Krucker, S., Kundu, M.R., Veronig, A.: 2011, Microflares and the statistics of X-ray flares. Space Sci. Rev. 159, 263.  DOI. ADS. ADSCrossRefGoogle Scholar
  141. Hannah, I.G., Grefenstette, B.W., Smith, D.M., Glesener, L., Krucker, S., Hudson, H.S., Madsen, K.K., Marsh, A., White, S.M., Caspi, A., Shih, A.Y., Harrison, F.A., Stern, D., Boggs, S.E., Christensen, F.E., Craig, W.W., Hailey, C.J., Zhang, W.W.: 2016, The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR. Astrophys. J. Lett. 820, L14.  DOI. ADS. ADSCrossRefGoogle Scholar
  142. Hansteen, V.: 1993, A new interpretation of the redshift observed in optically thin transition region lines. Astrophys. J. 402, 741.  DOI. ADS. ADSCrossRefGoogle Scholar
  143. Hansteen, V.H., Leer, E.: 1995, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577.  DOI. ADS. ADSCrossRefGoogle Scholar
  144. Hansteen, V., De Pontieu, B., Carlsson, M., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Pereira, T.M.D., De Luca, E.E., Golub, L., McKillop, S., Reeves, K., Saar, S., Testa, P., Tian, H., Kankelborg, C., Jaeggli, S., Kleint, L., Martínez-Sykora, J.: 2014, The unresolved fine structure resolved: IRIS observations of the solar transition region. Science 346, 1255757.  DOI. ADS. CrossRefGoogle Scholar
  145. Hansteen, V., Guerreiro, N., De Pontieu, B., Carlsson, M.: 2015, Numerical simulations of coronal heating through footpoint braiding. Astrophys. J. 811, 106.  DOI. ADS. ADSCrossRefGoogle Scholar
  146. Harrison, F.A., Craig, W.W., Christensen, F.E., Hailey, C.J., Zhang, W.W., Boggs, S.E., Stern, D., Cook, W.R., Forster, K., Giommi, P., Grefenstette, B.W., Kim, Y., Kitaguchi, T., Koglin, J.E., Madsen, K.K., Mao, P.H., Miyasaka, H., Mori, K., Perri, M., Pivovaroff, M.J., Puccetti, S., Rana, V.R., Westergaard, N.J., Willis, J., Zoglauer, A., An, H., Bachetti, M., Barrière, N.M., Bellm, E.C., Bhalerao, V., Brejnholt, N.F., Fuerst, F., Liebe, C.C., Markwardt, C.B., Nynka, M., Vogel, J.K., Walton, D.J., Wik, D.R., Alexander, D.M., Cominsky, L.R., Hornschemeier, A.E., Hornstrup, A., Kaspi, V.M., Madejski, G.M., Matt, G., Molendi, S., Smith, D.M., Tomsick, J.A., Ajello, M., Ballantyne, D.R., Baloković, M., Barret, D., Bauer, F.E., Blandford, R.D., Brandt, W.N., Brenneman, L.W., Chiang, J., Chakrabarty, D., Chenevez, J., Comastri, A., Dufour, F., Elvis, M., Fabian, A.C., Farrah, D., Fryer, C.L., Gotthelf, E.V., Grindlay, J.E., Helfand, D.J., Krivonos, R., Meier, D.L., Miller, J.M., Natalucci, L., Ogle, P., Ofek, E.O., Ptak, A., Reynolds, S.P., Rigby, J.R., Tagliaferri, G., Thorsett, S.E., Treister, E., Urry, C.M.: 2013, The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103.  DOI. ADS. ADSCrossRefGoogle Scholar
  147. Hasegawa, A., Mima, K., Duong-van, M.: 1985, Plasma distribution function in a superthermal radiation field. Phys. Rev. Lett. 54, 2608.  DOI. ADS. ADSCrossRefGoogle Scholar
  148. Heinzel, P.: 1991, A chromospheric response to pulse beam heating. Solar Phys. 135, 65.  DOI. ADS. ADSCrossRefGoogle Scholar
  149. Hellinger, P., Matteini, L., Štverák, Š., Trávníček, P.M., Marsch, E.: 2011, Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J. Geophys. Res. 116, 9105.  DOI. CrossRefGoogle Scholar
  150. Hellinger, P., Štverák, Š., Trávníček, P.M., Matteini, L., Velli, M.: 2013, Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res.  DOI. Google Scholar
  151. Hollweg, J.V.: 1974, On electron heat conduction in the solar wind. J. Geophys. Res. 79, 3845.  DOI. ADS. ADSCrossRefGoogle Scholar
  152. Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: 2003, Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97.  DOI. ADS. ADSCrossRefGoogle Scholar
  153. Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107.  DOI. ADS. ADSCrossRefGoogle Scholar
  154. Ishikawa, S.-n., Glesener, L., Christe, S., Ishibashi, K., Brooks, D.H., Williams, D.R., Shimojo, M., Sako, N., Krucker, S.: 2014, Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations. Publ. Astron. Soc. Japan 66, S15.  DOI. ADS. CrossRefGoogle Scholar
  155. Ishikawa, S., Krucker, S., Takahashi, T., Lin, R.P.: 2011, On the relation of above-the-loop and footpoint hard X-ray sources in solar flares. Astrophys. J. 737, 48.  DOI. ADS. ADSCrossRefGoogle Scholar
  156. Jeffrey, N.L.S., Fletcher, L., Labrosse, N.: 2016, First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion. Astron. Astrophys. 590, A99.  DOI. ADS. ADSCrossRefGoogle Scholar
  157. Jeffrey, N.L.S., Fletcher, L., Labrosse, N.: 2017, Non-Gaussian velocity distributions in solar flares from extreme ultraviolet lines: a possible diagnostic of ion acceleration. Astrophys. J. 836, 35.  DOI. ADS. ADSCrossRefGoogle Scholar
  158. Judge, P.G., Meisner, R.W.: 1994, The ‘HAO spectral diagnostics package’ (HAOS-Diaper). In: Hunt, J.J. (ed.) Solar Dynamic Phenomena and Solar Wind Consequences, the Third SOHO Workshop, ESA Special Publication 373, 67. ADS. Google Scholar
  159. Judge, P.G., Woods, T.N., Brekke, P., Rottman, G.J.: 1995, On the failure of standard emission measure analysis for solar extreme-ultraviolet and ultraviolet irradiance spectra. Astrophys. J. Lett. 455, L85.  DOI. ADS. ADSCrossRefGoogle Scholar
  160. Judge, P.G., de Pontieu, B., McIntosh, S.W., Olluri, K.: 2012, The connection of type II spicules to the corona. Astrophys. J. 746, 158.  DOI. ADS. ADSCrossRefGoogle Scholar
  161. Karlický, M.: 2009, Electron beam–plasma interaction and the return-current formation. Astrophys. J. 690, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  162. Karlický, M.: 2012, The n-distribution of electrons and double layers in the electron-beam-return-current system of solar flares. Astrophys. J. 750, 49.  DOI. ADS. ADSCrossRefGoogle Scholar
  163. Karlický, M., Kosugi, T.: 2004, Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159.  DOI. ADS. ADSCrossRefGoogle Scholar
  164. Karlický, M., Dzifčáková, E., Dudík, J.: 2012, On the physical meaning of n-distributions in solar flares. Astron. Astrophys. 537, A36.  DOI. ADS. CrossRefGoogle Scholar
  165. Kašparová, J., Karlický, M.: 2009, Kappa distribution and hard X-ray emission of solar flares. Astron. Astrophys. 497, L13.  DOI. ADS. ADSzbMATHCrossRefGoogle Scholar
  166. Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z.: 2009, Response of optical hydrogen lines to beam heating. I. Electron beams. Astron. Astrophys. 499, 923.  DOI. ADS. ADSCrossRefGoogle Scholar
  167. Keenan, F.P., Dufton, P.L., Kingston, A.E., Cook, J.W.: 1989, Si iii line ratios from the high-resolution telescope and spectrograph on board Spacelab 2 – the effects of non-Maxwellian electron distribution functions. Astrophys. J. 340, 1135.  DOI. ADS. ADSCrossRefGoogle Scholar
  168. Kepa, A., Sylwester, J., Sylwester, B., Siarkowski, M., Phillips, K.J.H., Kuznetsov, V.D.: 2006, Observations of 1s2–1s np and 1s–np lines in RESIK soft X-ray spectra. Adv. Space Res. 38, 1538.  DOI. ADS. ADSCrossRefGoogle Scholar
  169. Klimchuk, J.A.: 2006, On solving the coronal heating problem. Solar Phys. 234, 41.  DOI. ADS. ADSCrossRefGoogle Scholar
  170. Klimchuk, J.A.: 2015, Key Aspects of Coronal Heating. In: AAS/AGU Triennial Earth-Sun Summit, AAS/AGU Triennial Earth-Sun Summit 1, 203.08. ADS. Google Scholar
  171. Ko, Y.-K., Fisk, L.A., Geiss, J., Gloeckler, G., Guhathakurta, M.: 1997, An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Solar Phys. 171, 345. ADS. ADSCrossRefGoogle Scholar
  172. Kobayashi, K., Cirtain, J., Winebarger, A.R., Korreck, K., Golub, L., Walsh, R.W., De Pontieu, B., DeForest, C., Title, A., Kuzin, S., Savage, S., Beabout, D., Beabout, B., Podgorski, W., Caldwell, D., McCracken, K., Ordway, M., Bergner, H., Gates, R., McKillop, S., Cheimets, P., Platt, S., Mitchell, N., Windt, D.: 2014, The High-Resolution Coronal Imager (Hi-C). Solar Phys. 289, 4393.  DOI. ADS. ADSCrossRefGoogle Scholar
  173. Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G.D., Hurford, G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., Piana, M., Prato, M., Schmahl, E.J., Suarez-Garcia, E.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301.  DOI. ADS. ADSCrossRefGoogle Scholar
  174. Kontar, E.P., Bian, N.H., Emslie, A.G., Vilmer, N.: 2014, Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops. Astrophys. J. 780, 176.  DOI. ADS. ADSCrossRefGoogle Scholar
  175. Krucker, S., Battaglia, M.: 2014, Particle densities within the acceleration region of a solar flare. Astrophys. J. 780, 107.  DOI. ADS. ADSCrossRefGoogle Scholar
  176. Krucker, S., Lin, R.P.: 2008, Hard X-ray emissions from partially occulted solar flares. Astrophys. J. 673, 1181.  DOI. ADS. ADSCrossRefGoogle Scholar
  177. Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., Vlahos, L., White, S.M.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155.  DOI. ADS. ADSCrossRefGoogle Scholar
  178. Krucker, S., Hudson, H.S., Glesener, L., White, S.M., Masuda, S., Wuelser, J.-P., Lin, R.P.: 2010, Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108.  DOI. ADS. ADSCrossRefGoogle Scholar
  179. Krueger, A.: 1979, Introduction to Solar Radio Astronomy and Radio Physics, Geophysics and Astrophysics Monographs 16, Reidel, Dordrecht. ADS. CrossRefGoogle Scholar
  180. Kulinová, A., Kašparová, J., Dzifčáková, E., Sylwester, J., Sylwester, B., Karlický, M.: 2011, Diagnostics of non-thermal distributions in solar flare spectra observed by RESIK and RHESSI. Astron. Astrophys. 533, A81.  DOI. ADS. CrossRefGoogle Scholar
  181. Kuznetsov, V.D.: 2015, Solar and heliospheric space missions. Adv. Space Res. 55, 879.  DOI. ADS. ADSCrossRefGoogle Scholar
  182. Laming, J.M., Lepri, S.T.: 2007, Ion charge states in the fast solar wind: New data analysis and theoretical refinements. Astrophys. J. 660, 1642.  DOI. ADS. ADSCrossRefGoogle Scholar
  183. Laming, J.M., Adams, J., Alexander, D., Aschwanden, M., Bailey, C., Bandler, S., et al.: 2010, Science objectives for an X-ray microcalorimeter observing the sun. arXiv. ADS, 7 pp.
  184. Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E., Landini, M.: 2006, CHIANTI – an atomic database for emission lines. VII. New data for X-rays and other improvements. Astrophys. J. Suppl. 162, 261.  DOI. ADSCrossRefGoogle Scholar
  185. Landi, E., Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A.: 2012a, Charge state evolution in the solar wind. II. Plasma charge state composition in the inner corona and accelerating fast solar wind. Astrophys. J. 761, 48.  DOI. ADS. ADSCrossRefGoogle Scholar
  186. Landi, E., Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A.: 2012b, Charge state evolution in the solar wind. Radiative losses in fast solar wind plasmas. Astrophys. J. Lett. 758, L21.  DOI. ADS. ADSCrossRefGoogle Scholar
  187. Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI – an atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86.  DOI. ADS. ADSCrossRefGoogle Scholar
  188. Landi, E., Oran, R., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., van der Holst, B.: 2014, Charge state evolution in the solar wind. III. Model comparison with observations. Astrophys. J. 790, 111.  DOI. ADS. ADSCrossRefGoogle Scholar
  189. Landi, S., Pantellini, F.G.E.: 2001, On the temperature profile and heat flux in the solar corona: Kinetic simulations. Astron. Astrophys. 372, 686.  DOI. ADS. ADSCrossRefGoogle Scholar
  190. Landi, S., Matteini, L., Pantellini, F.: 2012, On the competition between radial expansion and Coulomb collisions in shaping the electron velocity distribution function: Kinetic simulations. Astrophys. J. 760, 143.  DOI. ADS. ADSCrossRefGoogle Scholar
  191. Landi, S., Matteini, L., Pantellini, F.: 2014, Electron heat flux in the solar wind: Are we observing the collisional limit in the 1 AU data? Astrophys. J. Lett. 790, L12.  DOI. ADS. ADSCrossRefGoogle Scholar
  192. Lang, J., Kent, B.J., Breeveld, A.A., Breeveld, E.R., Bromage, B.J.I., Hollandt, J., Payne, J., Pike, C.D., Thompson, W.T.: 2000, The laboratory calibration of the SOHO Coronal Diagnostic Spectrometer. J. Opt. A, Pure Appl. Opt. 2, 88.  DOI. ADS. ADSCrossRefGoogle Scholar
  193. Lang, J., Kent, B.J., Paustian, W., Brown, C.M., Keyser, C., Anderson, M.R., Case, G.C.R., Chaudry, R.A., James, A.M., Korendyke, C.M., Pike, C.D., Probyn, B.J., Rippington, D.J., Seely, J.F., Tandy, J.A., Whillock, M.C.R.: 2006, Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite. Appl. Opt. 45, 8689.  DOI. ADS. ADSCrossRefGoogle Scholar
  194. Lanza, A.F., Spadaro, D., Lanzafame, A.C., Antiochos, S.K., MacNeice, P.J., Spicer, D.S., O’Mullane, M.G.: 2001,. Astrophys. J. 547, 1116. ADSCrossRefGoogle Scholar
  195. Le Chat, G., Issautier, K., Meyer-Vernet, N., Zouganelis, I., Moncuquet, M., Hoang, S.: 2010, Quasi-thermal noise spectroscopy: preliminary comparison between kappa and sum of two Maxwellian distributions. In: Maksimovic, M., et al. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 316.  DOI. ADS. Google Scholar
  196. Lee, J., Lim, D., Choe, G.S., Kim, K.-S., Jang, M.: 2013, Coronal thick target hard X-ray emissions and radio emissions. Astrophys. J. Lett. 769, L11.  DOI. ADS. ADSCrossRefGoogle Scholar
  197. Leenaarts, J., Carlsson, M., Hansteen, V., Rutten, R.J.: 2007, Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere. Astron. Astrophys. 473, 625.  DOI. ADS. ADSCrossRefGoogle Scholar
  198. Lemaire, J.: 2010, Half a century of kinetic solar wind models. In: Maksimovic, M., et al. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 8.  DOI. ADS. Google Scholar
  199. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  200. Lepri, S.T., Laming, J.M., Rakowski, C.E., von Steiger, R.: 2012, Spatially dependent heating and ionization in an ICME observed by both ACE and Ulysses. Astrophys. J. 760, 105.  DOI. ADS. ADSCrossRefGoogle Scholar
  201. Leubner, M.P.: 2004, Core–halo distribution functions: A natural equilibrium state in generalized thermostatistics. Astrophys. J. 604, 469.  DOI. ADS. ADSCrossRefGoogle Scholar
  202. Li, G., Kong, X., Zank, G., Chen, Y.: 2013, On the spectral hardening at \({\gtrsim}\,300~\mbox{keV}\) in solar flares. Astrophys. J. 769, 22.  DOI. ADS. ADSCrossRefGoogle Scholar
  203. Li, T.C., Drake, J.F., Swisdak, M.: 2012, Suppression of energetic electron transport in flares by double layers. Astrophys. J. 757, 20.  DOI. ADS. ADSCrossRefGoogle Scholar
  204. Li, T.C., Drake, J.F., Swisdak, M.: 2013, Coronal electron confinement by double layers. Astrophys. J. 778, 144.  DOI. ADS. ADSCrossRefGoogle Scholar
  205. Li, T.C., Drake, J.F., Swisdak, M.: 2014, Dynamics of double layers, ion acceleration, and heat flux suppression during solar flares. Astrophys. J. 793, 7.  DOI. ADS. ADSCrossRefGoogle Scholar
  206. Lin, R.P.: 2011, Energy release and particle acceleration in flares: Summary and future prospects. Space Sci. Rev. 159, 421.  DOI. ADS. ADSCrossRefGoogle Scholar
  207. Lin, R.P., Hudson, H.S.: 1971, 10 – 100 keV electron acceleration and emission from solar flares. Solar Phys. 17, 412.  DOI. ADS. ADSCrossRefGoogle Scholar
  208. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  209. Lin, R.P., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., Holman, G.D., Schwartz, R.A., Dennis, B.R., Share, G.H., Murphy, R.J., Emslie, A.G., Johns-Krull, C., Vilmer, N.: 2003, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69.  DOI. ADS. ADSCrossRefGoogle Scholar
  210. Livadiotis, G.: 2015a, Introduction to special section on origins and properties of kappa distributions: Statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. 120, 1607.  DOI. ADS. CrossRefGoogle Scholar
  211. Livadiotis, G.: 2015b, Kappa and \(q\) indices: Dependence on the degrees of freedom. Entropy 17, 2062.  DOI. ADSMathSciNetCrossRefGoogle Scholar
  212. Livadiotis, G., McComas, D.J.: 2009, Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, 11105.  DOI. ADS. CrossRefGoogle Scholar
  213. Livadiotis, G., McComas, D.J.: 2010, Exploring transitions of space plasmas out of equilibrium. Astrophys. J. 714, 971.  DOI. ADS. ADSzbMATHCrossRefGoogle Scholar
  214. Livadiotis, G., McComas, D.J.: 2011, Invariant kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741, 88.  DOI. ADS. ADSCrossRefGoogle Scholar
  215. Livadiotis, G., McComas, D.J.: 2013, Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 175, 183.  DOI. ADS. ADSCrossRefGoogle Scholar
  216. Ljepojevic, N.N., MacNeice, P.: 1988, Non-Maxwellian distribution functions in flaring coronal loops – comparison of Landau–Fokker–Planck and BGK solutions. Solar Phys. 117, 123.  DOI. ADS. ADSCrossRefGoogle Scholar
  217. Longcope, D.W., Des Jardins, A.C., Carranza-Fulmer, T., Qiu, J.: 2010, A quantitative model of energy release and heating by time-dependent, localized reconnection in a flare with thermal loop-top X-ray source. Solar Phys. 267, 107.  DOI. ADS. ADSCrossRefGoogle Scholar
  218. Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., Li, Y., Laming, J.M., MacNeice, P.J., Linker, J.A.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J. 740, 112.  DOI. ADS. ADSCrossRefGoogle Scholar
  219. Mackovjak, Š., Dzifčáková, E., Dudík, J.: 2013, On the possibility to diagnose the Non-Maxwellian \(\kappa \)-distributions from the Hinode/EIS EUV spectra. Solar Phys. 282, 263.  DOI. ADS. ADSCrossRefGoogle Scholar
  220. Mackovjak, Š., Dzifčáková, E., Dudík, J.: 2014, Differential emission measure analysis of active region cores and quiet Sun for the non-Maxwellian \(\kappa\)-distributions. Astron. Astrophys. 564, A130.  DOI. ADS. CrossRefGoogle Scholar
  221. MacNiece, P.J., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: 2000,. Comput. Phys. Commun. 126, 330. ADSCrossRefGoogle Scholar
  222. Maksimovic, M., Pierrard, V., Lemaire, J.F.: 1997, A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 324, 725. ADS. ADSGoogle Scholar
  223. Maksimovic, M., Pierrard, V., Riley, P.: 1997, Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 1151.  DOI. ADS. ADSCrossRefGoogle Scholar
  224. Maksimovic, M., Hoang, S., Meyer-Vernet, N., Moncuquet, M., Bougeret, J.-L., Phillips, J.L., Canu, P.: 1995, Solar wind electron parameters from quasi-thermal noise spectroscopy and comparison with other measurements on Ulysses. J. Geophys. Res. 100, 19881.  DOI. ADS. ADSCrossRefGoogle Scholar
  225. Maksimovic, M., Issautier, K., Meyer-Vernet, N., Perche, C., Moncuquet, M., Zouganelis, I., Bale, S.D., Vilmer, N., Bougeret, J.-L.: 2005, Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy. Adv. Space Res. 36, 1471.  DOI. ADS. ADSCrossRefGoogle Scholar
  226. Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  227. Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K.-H., Neubauer, F.M.: 1982a, Solar wind helium ions – observations of the HELIOS solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 35. ADSCrossRefGoogle Scholar
  228. Marsch, E., Schwenn, R., Rosenbauer, H., Muehlhaeuser, K.-H., Pilipp, W., Neubauer, F.M.: 1982b, Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52. ADSCrossRefGoogle Scholar
  229. Martínez-Sykora, J., De Pontieu, B., Hansteen, V.H., Gudiksen, B.: 2016, Time dependent nonequilibrium ionization of transition region lines observed with IRIS. Astrophys. J. 817, 46.  DOI. ADS. ADSCrossRefGoogle Scholar
  230. Maruca, B.A., Kasper, J.C., Gary, S.P.: 2012, Instability-driven limits on helium temperature anisotropy in the solar wind: Observations and linear Vlasov analysis. Astrophys. J. 748, 137.  DOI. ADSCrossRefGoogle Scholar
  231. Mason, H.E., Monsignori Fossi, B.C.: 1994, Spectroscopic diagnostics in the VUV for solar and stellar plasmas. Astron. Astrophys. Rev. 6, 123.  DOI. ADS. ADSCrossRefGoogle Scholar
  232. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495.  DOI. ADS. ADSCrossRefGoogle Scholar
  233. Matteini, L., Hellinger, P., Landi, S., Trávnícek, P., Velli, M.: 2012, Ion kinetics in the solar wind: Coupling global expansion to local microphysics. Space Sci. Rev. 172, 373.  DOI. ADSCrossRefGoogle Scholar
  234. Matteini, L., Hellinger, P., Goldstein, B.E., Landi, S., Velli, M., Neugebauer, M.: 2013, Signatures of kinetic instabilities in the solar wind. J. Geophys. Res. 118, 2771.  DOI. CrossRefGoogle Scholar
  235. Matteini, L., Hellinger, P., Schwartz, S.J., Landi, S.: 2015, Fire hose instability driven by alpha particle temperature anisotropy. Astrophys. J. 812, 13.  DOI. ADSCrossRefGoogle Scholar
  236. Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: Rate coefficients for all atoms and ions of the elements H to Ni. Astron. Astrophys. Suppl. 133, 403.  DOI. ADS. ADSCrossRefGoogle Scholar
  237. McWhirter, R.W.P., Summers, H.P.: 1984, Atomic radiation from low density plasma. In: Applied Atomic Collision Physics, vol. 2. Plasmas, 51.  DOI. Google Scholar
  238. Mewe, R., Gronenschild, E.H.B.M., van den Oord, G.H.J.: 1985, Calculated X-radiation from optically thin plasmas. V. Astron. Astrophys. Suppl. 62, 197. ADS. ADSGoogle Scholar
  239. Mewe, R., Lemen, J.R., Peres, G., Schrijver, J., Serio, S.: 1985, Solar X-ray spectrum simulations for flaring loop models with emphasis on transient ionization effects during the impulsive phase. Astron. Astrophys. 152, 229. ADS. ADSGoogle Scholar
  240. Meyer-Vernet, N.: 1993, Aspects of Debye shielding. Am. J. Phys. 61, 249.  DOI. ADSCrossRefGoogle Scholar
  241. Meyer-Vernet, N.: 1999, How does the solar wind blow? A simple kinetic model. Eur. J. Phys. 20, 167.  DOI. ADS. CrossRefGoogle Scholar
  242. Meyer-Vernet, N.: 2001, Large scale structure of planetary environments: The importance of not being Maxwellian. Planet. Space Sci. 49, 247.  DOI. ADS. ADSCrossRefGoogle Scholar
  243. Meyer-Vernet, N.: 2007, Basics of the Solar Wind, Cambridge University Press, Cambridge ADS. CrossRefGoogle Scholar
  244. Meyer-Vernet, N., Issautier, K.: 1998, Electron temperature in the solar wind: Generic radial variation from kinetic collisionless models. J. Geophys. Res. 103, 29705.  DOI. ADS. ADSCrossRefGoogle Scholar
  245. Meyer-Vernet, N., Perche, C.: 1989, Tool kit for antennae and thermal noise near the plasma frequency. J. Geophys. Res. 94, 2405.  DOI. ADS. ADSCrossRefGoogle Scholar
  246. Meyer-Vernet, N., Hoang, S., Issautier, K., Maksimovic, M., Manning, R., Moncuquet, M., Stone, R.G.: 1998, Measuring plasma parameters with thermal noise spectroscopy. In: Pfaff, R., et al. (eds.) Measurement Techniques in Space Plasmas: Fields, Geophys. Monograph Ser. 103, 205. ADS. CrossRefGoogle Scholar
  247. Miller, J.A., Cargill, P.J., Emslie, A., Holamn, G.D., Dennis, B.R., Larosa, T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: 1997, Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 1463. ADS. ADSGoogle Scholar
  248. Milligan, R.O., Kennedy, M.B., Mathioudakis, M., Keenan, F.P.: 2012, Time-dependent density diagnostics of solar flare plasmas using SDO/EVE. Astrophys. J. Lett. 755, L16.  DOI. ADS. ADSCrossRefGoogle Scholar
  249. Minoshima, T., Masuda, S., Miyoshi, Y., Kusano, K.: 2011, Coronal electron distribution in solar flares: Drift-kinetic model. Astrophys. J. 732, 111.  DOI. ADS. ADSCrossRefGoogle Scholar
  250. Moncuquet, M., Matsumoto, H., Bougeret, J.-L., Blomberg, L.G., Issautier, K., Kasaba, Y., Kojima, H., Maksimovic, M., Meyer-Vernet, N., Zarka, P.: 2006, The radio waves and thermal electrostatic noise spectroscopy (SORBET) experiment on BEPICOLOMBO/MMO/PWI: Scientific objectives and performance. Adv. Space Res. 38, 680.  DOI. ADS. ADSCrossRefGoogle Scholar
  251. Nicholls, D.C., Dopita, M.A., Sutherland, R.S.: 2012, Resolving the electron temperature discrepancies in H ii regions and planetary nebulae: \(\kappa\)-distributed electrons. Astrophys. J. 752, 148.  DOI. ADS. ADSCrossRefGoogle Scholar
  252. Nicolaou, G., Livadiotis, G.: 2016, Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophys. Space Sci. 361, 359.  DOI. ADS. ADSCrossRefGoogle Scholar
  253. Nikolić, D., Gorczyca, T.W., Korista, K.T., Ferland, G.J., Badnell, N.R.: 2013, Suppression of dielectronic recombination due to finite density effects. Astrophys. J. 768, 82.  DOI. ADS. ADSCrossRefGoogle Scholar
  254. Nishizuka, N., Shibata, K.: 2013, Fermi acceleration in plasmoids interacting with fast shocks of reconnection via fractal reconnection. Phys. Rev. Lett. 110(5), 051101.  DOI. ADS. ADSCrossRefGoogle Scholar
  255. Noci, G., Spadaro, D., Zappala, R.A., Antiochos, S.K.: 1989, Mass flows and the ionization states of coronal loops. Astrophys. J. 338, 1131.  DOI. ADS. ADSCrossRefGoogle Scholar
  256. Oka, M., Phan, T.-D., Krucker, S., Fujimoto, M., Shinohara, I.: 2010, Electron acceleration by multi-island coalescence. Astrophys. J. 714, 915.  DOI. ADS. ADSCrossRefGoogle Scholar
  257. Oka, M., Ishikawa, S., Saint-Hilaire, P., Krucker, S., Lin, R.P.: 2013, Kappa distribution model for hard X-ray coronal sources of solar flares. Astrophys. J. 764, 6.  DOI. ADS. ADSCrossRefGoogle Scholar
  258. Oka, M., Krucker, S., Hudson, H.S., Saint-Hilaire, P.: 2015, Electron energy partition in the above-the-looptop solar hard X-ray sources. Astrophys. J. 799, 129.  DOI. ADS. ADSCrossRefGoogle Scholar
  259. Olbert, S.: 1968, Summary of Experimental Results from M.I.T. Detector on IMP-1. In: Carovillano, R.D.L., McClay, J.F. (eds.) Physics of the Magnetosphere, Astrophys. Spa. Sci. Lib. 10, 641.  DOI. ADS. CrossRefGoogle Scholar
  260. Olbert, S.: 1981, Inferences about the solar wind dynamics from observed distributions of electrons and ions. In: Guyenne, T.D., Lévy, G. (eds.) ESA Special Publication, ESA SP-161, 135. ADS. Google Scholar
  261. Olluri, K., Gudiksen, B.V., Hansteen, V.H.: 2013a, Non-equilibrium ionization effects on the density line ratio diagnostics of O iv. Astrophys. J. 767, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  262. Olluri, K., Gudiksen, B.V., Hansteen, V.H.: 2013b, Non-equilibrium ionization in the Bifrost stellar atmosphere code. Astron. J. 145, 72.  DOI. ADS. ADSCrossRefGoogle Scholar
  263. Olluri, K., Gudiksen, B.V., Hansteen, V.H., De Pontieu, B.: 2015, Synthesized spectra of optically thin emission lines. Astrophys. J. 802, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  264. Oraevsky, V.N., Galeev, A.A., Kuznetsov, V.D., Zelenyi, L.M.: 2001, Orbiter and Russian Aviation and Space Agency Interhelioprobe. In: Solar Encounter. Proc. First Solar Orbiter Workshop, ESA SP-493, 95. ADS. Google Scholar
  265. Oran, R., van der Holst, B., Landi, E., Jin, M., Sokolov, I.V., Gombosi, T.I.: 2013, A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. Astrophys. J. 778, 176.  DOI. ADS. ADSCrossRefGoogle Scholar
  266. Oran, R., Landi, E., van der Holst, B., Lepri, S.T., Vásquez, A.M., Nuevo, F.A., Frazin, R., Manchester, W., Sokolov, I., Gombosi, T.I.: 2015, A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J. 806, 55.  DOI. ADS. ADSCrossRefGoogle Scholar
  267. Owocki, S., Townsend, R., Ud-Doula, A.: 1999, Charge states of C and O from coronal holes: Non-Maxwellian distribution vs. unequal ion speeds. In: Habbal, S.R., Halas, C.D. (eds.) The solar wind nine conference., American Institute of Physics Conference Series 471, 263.  DOI. Google Scholar
  268. Owocki, S.P., Scudder, J.D.: 1983, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona. Astrophys. J. 270, 758.  DOI. ADS. ADSCrossRefGoogle Scholar
  269. Parker, E.N.: 1983, Magnetic neutral sheets in evolving fields – Part two – Formation of the solar corona. Astrophys. J. 264, 642.  DOI ADSCrossRefGoogle Scholar
  270. Parker, E.N.: 1988, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474.  DOI ADSCrossRefGoogle Scholar
  271. Parker, E.N.: 2010, Kinetic and hydrodynamic representations of coronal expansion and the solar wind. In: Maksimovic, M., et al. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 3.  DOI. ADS. Google Scholar
  272. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  273. Peter, H., Tian, H., Curdt, W., Schmit, D., Innes, D., De Pontieu, B., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Martínez-Sykora, J., Kleint, L., Golub, L., McKillop, S., Reeves, K.K., Saar, S., Testa, P., Kankelborg, C., Jaeggli, S., Carlsson, M., Hansteen, V.: 2014, Hot explosions in the cool atmosphere of the Sun. Science 346, 1255726.  DOI. ADS. CrossRefGoogle Scholar
  274. Petkaki, P., MacKinnon, A.L.: 2011, Acceleration of charged particles by fluctuating and steady electric fields in a X-type magnetic field. Adv. Space Res. 48, 884.  DOI. ADS. ADSCrossRefGoogle Scholar
  275. Phillips, K.J.H., Feldman, U., Landi, E.: 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge University Press, Cambridge ADS. CrossRefGoogle Scholar
  276. Phillips, K.J.H., Bhatia, A.K., Mason, H.E., Zarro, D.M.: 1996, High coronal electron densities in a solar flare from Fe XXI and Fe XXII X-ray line measurements. Astrophys. J. 466, 549.  DOI. ADS. ADSCrossRefGoogle Scholar
  277. Pierrard, V., Lazar, M.: 2010, Kappa distributions: Theory and applications in space plasmas. Solar Phys. 267, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  278. Pierrard, V., Pieters, M.: 2014, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441.  DOI. ADS. CrossRefGoogle Scholar
  279. Pierrard, V., Lazar, M., Schlickeiser, R.: 2011, Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Solar Phys. 269, 421.  DOI. ADS. ADSCrossRefGoogle Scholar
  280. Pierrard, V., Maksimovic, M., Lemaire, J.: 1999, Electron velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 104, 17021.  DOI. ADS. ADSCrossRefGoogle Scholar
  281. Pierrard, V., Lazar, M., Poedts, S., Štverák, Š., Maksimovic, M., Trávníček, P.M.: 2016, The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations. Solar Phys. 291, 2165.  DOI. ADS. ADSCrossRefGoogle Scholar
  282. Pilipp, W.G., Muehlhaeuser, K.-H., Miggenrieder, H., Montgomery, M.D., Rosenbauer, H.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 1075.  DOI. ADS. ADSCrossRefGoogle Scholar
  283. Pinfield, D.J., Keenan, F.P., Mathioudakis, M., Phillips, K.J.H., Curdt, W., Wilhelm, K.: 1999, Evidence for non-Maxwellian electron energy distributions in the solar transition region: Si iii line ratios from SUMER. Astrophys. J. 527, 1000.  DOI. ADS. ADSCrossRefGoogle Scholar
  284. Pinto, R.F., Gordovskyy, M., Browning, P.K., Vilmer, N.: 2016, Thermal and non-thermal emission from reconnecting twisted coronal loops. Astron. Astrophys. 585, A159.  DOI. ADS. ADSCrossRefGoogle Scholar
  285. Polito, V., Del Zanna, G., Dudík, J., Mason, H.E., Giunta, A., Reeves, K.K.: 2016a, Density diagnostics derived from the O iv and S iv intercombination lines observed by IRIS. Astron. Astrophys. 594, A64.  DOI. ADS. CrossRefGoogle Scholar
  286. Polito, V., Reep, J.W., Reeves, K.K., Simões, P.J.A., Dudík, J., Del Zanna, G., Mason, H.E., Golub, L.: 2016b, Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  287. Priest, E., Forbes, T.: 2000, Magnetic Reconnection, Cambridge University Press, Cambridge. ADS. zbMATHCrossRefGoogle Scholar
  288. Ralchenko, Y., Feldman, U., Doschek, G.A.: 2007, Is there a high-energy particle population in the quiet solar corona? Astrophys. J. 659, 1682.  DOI. ADS. ADSCrossRefGoogle Scholar
  289. Raymond, J.C.: 1990, Predicted extreme-ultraviolet and X-ray spectrum of a microflare-heated corona. Astrophys. J. 365, 387.  DOI. ADS. ADSCrossRefGoogle Scholar
  290. Raymond, J.C., Dupree, A.K.: 1978, C III density diagnostics in nonequilibrium plasmas. Astrophys. J. 222, 379.  DOI. ADS. ADSCrossRefGoogle Scholar
  291. Reale, F., Orlando, S.: 2008, Nonequilibrium of ionization and the detection of hot plasma in nanoflare-heated coronal loops. Astrophys. J. 684, 715.  DOI. ADS. ADSCrossRefGoogle Scholar
  292. Reep, J.W., Russell, A.J.B.: 2016, Alfvénic wave heating of the upper chromosphere in flares. Astrophys. J. Lett. 818, L20.  DOI. ADS. ADSCrossRefGoogle Scholar
  293. Reep, J.W., Bradshaw, S.J., Alexander, D.: 2015, Optimal electron energies for driving chromospheric evaporation in solar flares. Astrophys. J. 808, 177.  DOI. ADS. ADSCrossRefGoogle Scholar
  294. Reep, J.W., Bradshaw, S.J., McAteer, R.T.J.: 2013, On the sensitivity of the GOES flare classification to properties of the electron beam in the thick-target model. Astrophys. J. 778, 76.  DOI. ADS. ADSCrossRefGoogle Scholar
  295. Régnier, S., Alexander, C.E., Walsh, R.W., Winebarger, A.R., Cirtain, J., Golub, L., Korreck, K.E., Mitchell, N., Platt, S., Weber, M., De Pontieu, B., Title, A., Kobayashi, K., Kuzin, S., DeForest, C.E.: 2014, Sparkling extreme-ultraviolet bright dots observed with Hi-C. Astrophys. J. 784, 134.  DOI. ADS. ADSCrossRefGoogle Scholar
  296. Rodkin, D., Goryaev, F., Pagano, P., Gibb, G., Slemzin, V., Shugay, Y., Veselovsky, I., Mackay, D.H.: 2017, Origin and ion charge state evolution of solar wind transients during 4 – 7 August 2011. Solar Phys. 292, 90.  DOI. ADS. ADSCrossRefGoogle Scholar
  297. Roussel-Dupré, R.: 1980a, Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. I – Estimate of the electron velocity distribution functions. Solar Phys. 68, 243.  DOI. ADS. ADSCrossRefGoogle Scholar
  298. Roussel-Dupré, R.: 1980b, Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. II. The effect of non-Maxwellian electron distribution functions on ionization equilibrium calculations for carbon, nitrogen and oxygen. Solar Phys. 68, 265.  DOI. ADS. ADSCrossRefGoogle Scholar
  299. Saint-Hilaire, P., Krucker, S., Lin, R.P.: 2008, A statistical survey of hard X-ray spectral characteristics of solar flares with two footpoints. Solar Phys. 250, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  300. Sakao, T.: 1994, Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite. PhD thesis, University of Tokyo. ADS.
  301. Salem, C., Bosqued, J.-M., Larson, D.E., Mangeney, A., Maksimovic, M., Perche, C., Lin, R.P., Bougeret, J.-L.: 2001, Determination of accurate solar wind electron parameters using particle detectors and radio wave receivers. J. Geophys. Res. 106, 21701.  DOI. ADS. ADSCrossRefGoogle Scholar
  302. Schmelz, J.T., Winebarger, A.R.: 2015, What can observations tell us about coronal heating? Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 373, 20140257.  DOI. ADS. ADSCrossRefGoogle Scholar
  303. Schmelz, J.T., Kashyap, V.L., Saar, S.H., Dennis, B.R., Grigis, P.C., Lin, L., De Luca, E.E., Holman, G.D., Golub, L., Weber, M.A.: 2009, Some like it hot: Coronal heating observations from Hinode X-ray telescope and RHESSI. Astrophys. J. 704, 863.  DOI. ADS. ADSCrossRefGoogle Scholar
  304. Scudder, J.D.: 1992a, On the causes of temperature change in inhomogeneous low-density astrophysical plasmas. Astrophys. J. 398, 299.  DOI. ADS. ADSCrossRefGoogle Scholar
  305. Scudder, J.D.: 1992b, Why all stars should possess circumstellar temperature inversions. Astrophys. J. 398, 319.  DOI. ADS. ADSCrossRefGoogle Scholar
  306. Scudder, J.D., Karimabadi, H.: 2013, Ubiquitous non-thermals in astrophysical plasmas: Restating the difficulty of maintaining Maxwellians. Astrophys. J. 770, 26.  DOI. ADS. ADSCrossRefGoogle Scholar
  307. Scudder, J.D., Olbert, S.: 1979, A theory of local and global processes which affect solar wind electrons. I – The origin of typical 1 AU velocity distribution functions – steady state theory. J. Geophys. Res. 84, 2755.  DOI. ADS. ADSCrossRefGoogle Scholar
  308. Scudder, J.D., Olbert, S.: 1983, The collapse of the local, Spitzer–Haerm formulation and a global-local generalization for heat flow in an inhomogeneous, fully ionized plasma. In: NASA Conf. Publ., NASA Conference Publication 228, 163. ADS. Google Scholar
  309. Seely, J.F., Feldman, U., Doschek, G.A.: 1987, Observation of nonthermal energy distributions during the impulsive phase of solar flares. Astrophys. J. 319, 541.  DOI. ADS. ADSCrossRefGoogle Scholar
  310. Serio, S., Reale, F., Jakimiec, J., Sylwester, B., Sylwester, J.: 1991, Dynamics of flaring loops. I – Thermodynamic decay scaling laws. Astron. Astrophys. 241, 197. ADS. ADSzbMATHGoogle Scholar
  311. Shen, C., Reeves, K.K., Raymond, J.C., Murphy, N.A., Ko, Y.-K., Lin, J., Mikić, Z., Linker, J.A.: 2013, Non-equilibrium ionization modeling of the current sheet in a simulated solar eruption. Astrophys. J. 773, 110.  DOI. ADS. ADSCrossRefGoogle Scholar
  312. Shoub, E.C.: 1983, Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I – Fokker–Planck results. Astrophys. J. 266, 339.  DOI. ADS. ADSCrossRefGoogle Scholar
  313. Siarkowski, M., Sylwester, J., Bąkała, J., Szaforz, Ż., Kowaliński, M., Kordylewski, Z., Płocieniak, S., Podgórski, P., Sylwester, B., Trzebiński, W., Stȩślicki, M., Phillips, K.J.H., Dudnik, O.V., Kurbatov, E., Kuznetsov, V.D., Kuzin, S., Zimovets, I.V.: 2016, ChemiX: a Bragg crystal spectrometer for the Interhelioprobe interplanetary mission. Exp. Astron. 41, 327.  DOI. ADS. ADSCrossRefGoogle Scholar
  314. Simões, P.J.A., Kontar, E.P.: 2013, Implications for electron acceleration and transport from non-thermal electron rates at looptop and footpoint sources in solar flares. Astron. Astrophys. 551, A135.  DOI. ADS. CrossRefGoogle Scholar
  315. Smith, R.K., Hughes, J.P.: 2010, Ionization equilibrium timescales in collisional plasmas. Astrophys. J. 718, 583.  DOI. ADS. ADSCrossRefGoogle Scholar
  316. Somov, B.V., Kosugi, T.: 1997, Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859. ADS. ADSCrossRefGoogle Scholar
  317. Spadaro, D., Leto, P., Antiochos, S.K.: 1994, Observational tests for nonequilibrium ionization in the solar corona. Astrophys. J. 427, 453.  DOI. ADS. ADSCrossRefGoogle Scholar
  318. Spitzer, L., Härm, R.: 1953, Transport phenomena in completely ionised gas. Phys. Rev. 89, 977.  DOI. ADSzbMATHCrossRefGoogle Scholar
  319. Stone, R.G., Bougeret, J.L., Caldwell, J., Canu, P., de Conchy, Y., Cornilleau-Wehrlin, N., Desch, M.D., Fainberg, J., Goetz, K., Goldstein, M.L.: 1992, The unified radio and plasma wave investigation. Astron. Astrophys. Suppl. 92, 291. ADS. ADSGoogle Scholar
  320. Strong, K.T.: 1978, PhD thesis, Univ. College London. ADS.
  321. Sui, L., Holman, G.D.: 2003, Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. Lett. 596, L251.  DOI. ADS. ADSCrossRefGoogle Scholar
  322. Summers, H.P.: 1974a, Appleton Laboratory Internal Memorandum IM367 & Re-issued with Improvements as AL-R-5. Google Scholar
  323. Summers, H.P.: 1974b, The ionization equilibrium of hydrogen-like to argon-like ions of elements. Mon. Not. Roy. Astron. Soc. 169, 663.  DOI. ADS. ADSCrossRefGoogle Scholar
  324. Summers, H.P., Dickson, W.J., O’Mullane, M.G., Badnell, N.R., Whiteford, A.D., Brooks, D.H., Lang, J., Loch, S.D., Griffin, D.C.: 2006, Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional radiative model for light elements. Plasma Phys. Control. Fusion 48, 263.  DOI. ADS. ADSCrossRefGoogle Scholar
  325. Sun, J.Q., Cheng, X., Ding, M.D.: 2014, Differential emission measure analysis of a limb solar flare on 2012 July 19. Astrophys. J. 786, 73.  DOI. ADS. ADSCrossRefGoogle Scholar
  326. Susino, R., Lanzafame, A.C., Lanza, A.F., Spadaro, D.: 2010, Signatures of impulsive localized heating in the temperature distribution of multi-stranded coronal loops. Astrophys. J. 709, 499.  DOI. ADS. ADSCrossRefGoogle Scholar
  327. Suzuki, S., Dulk, G.A.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Bursts of Type III and Type V, 289. ADS. Google Scholar
  328. Sylwester, J., Sylwester, B., Phillips, K.J.H.: 2008, RESIK observations of helium-like argon X-ray line emission in solar flares. Astrophys. J. Lett. 681, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  329. Sylwester, J., Gaicki, I., Kordylewski, Z., Kowaliński, M., Nowak, S., Płocieniak, S., Siarkowski, M., Sylwester, B., Trzebiński, W., Bakała, J., Culhane, J.L., Whyndham, M., Bentley, R.D., Guttridge, P.R., Phillips, K.J.H., Lang, J., Brown, C.M., Doschek, G.A., Kuznetsov, V.D., Oraevsky, V.N., Stepanov, A.I., Lisin, D.V.: 2005, Resik: A bent crystal X-ray spectrometer for studies of solar coronal plasma composition. Solar Phys. 226, 45.  DOI. ADS. ADSCrossRefGoogle Scholar
  330. Sylwester, J., Kordylewski, Z., Plocieniak, S., Siarkowski, M., et al.: 2015, X-ray flare spectra from the DIOGENESS Spectrometer and its concept applied to ChemiX on the Interhelioprobe Spacecraft. Solar Phys. 290, 3683.  DOI. ADS. ADSCrossRefGoogle Scholar
  331. Tajfirouze, E., Reale, F., Peres, G., Testa, P.: 2016, EUV flickering of solar coronal loops: A new diagnostic of coronal heating. Astrophys. J. Lett. 817, L11.  DOI. ADS. ADSCrossRefGoogle Scholar
  332. Tanaka, K., Watannabe, T., Nishi, K., Akita, K.: 1982, High-resolution solar flare X-ray spectra obtained with rotating spectrometers on the HINOTORI satellite. Astrophys. J. Lett. 254, L59.  DOI. ADS. ADSCrossRefGoogle Scholar
  333. Tandberg-Hanssen, E., Emslie, A.G.: 1988, The Physics of Solar Flares, Cambridge University Press, Cambridge. ADS. Google Scholar
  334. Tao, J., Wang, L., Zong, Q., Li, G., Salem, C.S., Wimmer-Schweingruber, R.F., He, J., Tu, C., Bale, S.D.: 2016, Quiet-time suprathermal (\({\sim}\,0.1\,\mbox{--}\,1.5~\mbox{keV}\)) electrons in the solar wind. Astrophys. J. 820, 22.  DOI. ADS. ADSCrossRefGoogle Scholar
  335. Teriaca, L., Andretta, V., Auchère, F., Brown, C.M., Buchlin, E., Cauzzi, G., Culhane, J.L., Curdt, W., Davila, J.M., Del Zanna, G., Doschek, G.A., Fineschi, S., Fludra, A., Gallagher, P.T., Green, L., Harra, L.K., Imada, S., Innes, D., Kliem, B., Korendyke, C., Mariska, J.T., Martínez-Pillet, V., Parenti, S., Patsourakos, S., Peter, H., Poletto, L., Rutten, R.J., Schühle, U., Siemer, M., Shimizu, T., Socas-Navarro, H., Solanki, S.K., Spadaro, D., Trujillo-Bueno, J., Tsuneta, S., Dominguez, S.V., Vial, J.-C., Walsh, R., Warren, H.P., Wiegelmann, T., Winter, B., Young, P.: 2012, LEMUR: Large European module for solar Ultraviolet Research. European contribution to JAXA’s Solar-C mission. Exp. Astron. 34, 273.  DOI. ADS. ADSCrossRefGoogle Scholar
  336. Testa, P., De Pontieu, B., Martínez-Sykora, J., DeLuca, E., Hansteen, V., Cirtain, J., Winebarger, A., Golub, L., Kobayashi, K., Korreck, K., Kuzin, S., Walsh, R., DeForest, C., Title, A., Weber, M.: 2013, Observing coronal nanoflares in active region moss. Astrophys. J. Lett. 770, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  337. Testa, P., De Pontieu, B., Allred, J., Carlsson, M., Reale, F., Daw, A., Hansteen, V., Martinez-Sykora, J., Liu, W., DeLuca, E.E., Golub, L., McKillop, S., Reeves, K., Saar, S., Tian, H., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kleint, L., Kankelborg, C., Jaeggli, S.: 2014, Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares. Science 346, 1255724.  DOI. ADS. CrossRefGoogle Scholar
  338. Tian, H., Kleint, L., Peter, H., Weber, M., Testa, P., DeLuca, E., Golub, L., Schanche, N.: 2014, Observations of subarcsecond bright dots in the transition region above sunspots with the Interface Region Imaging Spectrograph. Astrophys. J. Lett. 790, L29.  DOI. ADS. ADSCrossRefGoogle Scholar
  339. Tsallis, C.: 1988, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479.  DOI. ADS. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  340. Tsallis, C.: 2009, Introduction to Nonextensive Statistical Mechanics, Springer, New York. zbMATHGoogle Scholar
  341. Tsuneta, S.: 1996, Structure and dynamics of magnetic reconnection in a solar flare: Erratum. Astrophys. J. 464, 1055.  DOI. ADS. ADSCrossRefGoogle Scholar
  342. Tsuneta, S., Naito, T.: 1998, Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. Lett. 495, L67.  DOI. ADS. ADSCrossRefGoogle Scholar
  343. Vasyliunas, V.M.: 1968a, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839.  DOI. ADS. ADSCrossRefGoogle Scholar
  344. Vasyliunas, V.M.: 1968b, Low-energy electrons in the magnetosphere as observed by OGO-1 and OGO-3. In: Carovillano, R.D.L., McClay, J.F. (eds.) Physics of the Magnetosphere, Astrophys. Spa. Sci. Lib. 10, 622. ADS. CrossRefGoogle Scholar
  345. Veck, N.J., Strong, K.T., Jordan, C., Simnett, G.M., Cargill, P.J., Priest, E.R.: 1984, The development and cooling of a solar limb-flare. Mon. Not. Roy. Astron. Soc. 210, 443.  DOI. ADS. ADSCrossRefGoogle Scholar
  346. Veronig, A.M., Brown, J.C.: 2004, A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  347. Viall, N.M., Klimchuk, J.A.: 2011, Patterns of nanoflare storm heating exhibited by an active region observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly. Astrophys. J. 738, 24.  DOI. ADS. ADSCrossRefGoogle Scholar
  348. Vilmer, N., MacKinnon, A.L., Hurford, G.J.: 2011, Properties of energetic ions in the solar atmosphere from \(\gamma\)-ray and neutron observations. Space Sci. Rev. 159, 167.  DOI. ADS. ADSCrossRefGoogle Scholar
  349. Vissers, G.J.M., Rouppe van der Voort, L.H.M., Rutten, R.J., Carlsson, M., De Pontieu, B.: 2015, Ellerman bombs at high resolution. III. Simultaneous observations with IRIS and SST. Astrophys. J. 812, 11.  DOI. ADS. ADSCrossRefGoogle Scholar
  350. Vocks, C.: 2012, Kinetic models for whistler wave scattering of electrons in the solar corona and wind. Space Sci. Rev. 172, 303.  DOI. ADS. ADSCrossRefGoogle Scholar
  351. Vocks, C., Dzifčáková, E., Mann, G.: 2016, Suprathermal electron distributions in the solar transition region. Astron. Astrophys. 596, A41.  DOI. CrossRefGoogle Scholar
  352. Vocks, C., Mann, G., Rausche, G.: 2008, Formation of suprathermal electron distributions in the quiet solar corona. Astron. Astrophys. 480, 527.  DOI. ADS. ADSzbMATHCrossRefGoogle Scholar
  353. Vocks, C., Salem, C., Lin, R.P., Mann, G.: 2005, Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves. Astrophys. J. 627, 540.  DOI. ADS. ADSCrossRefGoogle Scholar
  354. Wannawichian, S., Ruffolo, D., Kartavykh, Y.Y.: 2003, Ionization fractions of slow ions in a plasma with kappa distributions for the electron velocity. Astrophys. J. Suppl. 146, 443.  DOI. ADS. ADSCrossRefGoogle Scholar
  355. Wargelin, B.J., Beiersdorfer, P., Brown, G.V.: 2008, EBIT charge-exchange measurements and astrophysical applications. Can. J. Phys. 86, 151.  DOI. ADS. ADSCrossRefGoogle Scholar
  356. Warren, H.P., Ugarte-Urra, I., Landi, E.: 2014, The absolute calibration of the EUV imaging spectrometer on Hinode. Astrophys. J. Suppl. 213, 11.  DOI. ADS. ADSCrossRefGoogle Scholar
  357. Warren, H.P., Winebarger, A.R., Brooks, D.H.: 2012, A systematic survey of high-temperature emission in solar active regions. Astrophys. J. 759, 141.  DOI. ADS. ADSCrossRefGoogle Scholar
  358. Watanabe, T., Hara, H., Yamamoto, N., Kato, D., Sakaue, H.A., Murakami, I., Kato, T., Nakamura, N., Young, P.R.: 2009, Fe XIII density diagnostics in the EIS observing wavelengths. Astrophys. J. 692, 1294.  DOI. ADS. ADSCrossRefGoogle Scholar
  359. Wedemeyer-Böhm, S., Carlsson, M.: 2011, Non-equilibrium calcium ionisation in the solar atmosphere. Astron. Astrophys. 528, A1.  DOI. ADS. ADSCrossRefGoogle Scholar
  360. West, M.J., Bradshaw, S.J., Cargill, P.J.: 2008, On the lifetime of hot coronal plasmas arising from nanoflares. Solar Phys. 252, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  361. White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225.  DOI. ADS. ADSCrossRefGoogle Scholar
  362. Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Hassler, D.M., Siegmund, O.H.W.: 1995, SUMER – Solar Ultraviolet Measurements of Emitted Radiation. Solar Phys. 162, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  363. Winebarger, A.R.: 2012, The Frequency of Heating in Active Region Cores: Results from the Fifth Coronal Loops Workshop. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, Astronomical Society of the Pacific Conference Series 456, 103. ADS. Google Scholar
  364. Winebarger, A.R., Warren, H.P., Schmelz, J.T., Cirtain, J., Mulu-Moore, F., Golub, L., Kobayashi, K.: 2012, Defining the “blind spot” of Hinode EIS and XRT temperature measurements. Astrophys. J. Lett. 746, L17.  DOI. ADS. ADSCrossRefGoogle Scholar
  365. Yan, L., Peter, H., He, J., Tian, H., Xia, L., Wang, L., Tu, C., Zhang, L., Chen, F., Barczynski, K.: 2015, Self-absorption in the solar transition region. Astrophys. J. 811, 48.  DOI. ADS. ADSCrossRefGoogle Scholar
  366. Yoon, P.H., Kim, S., Choe, G.S., Moon, Y.-J.: 2016, Revised model of the steady-state solar wind halo electron velocity distribution function. Astrophys. J. 826, 204.  DOI. ADS. ADSCrossRefGoogle Scholar
  367. Young, P.R., Watanabe, T., Hara, H., Mariska, J.T.: 2009, High-precision density measurements in the solar corona. I. Analysis methods and results for Fe XII and Fe XIII. Astron. Astrophys. 495, 587.  DOI. ADS. ADSCrossRefGoogle Scholar
  368. Young, P.R., Doschek, G.A., Warren, H.P., Hara, H.: 2013, Properties of a solar flare kernel observed by Hinode and SDO. Astrophys. J. 766, 127.  DOI. ADS. ADSCrossRefGoogle Scholar
  369. Younger, S.M.: 1981, Electron impact ionization cross sections and rates for highly ionized atoms. J. Quant. Spectrosc. Radiat. Transf. 26, 329.  DOI. ADS. ADSCrossRefGoogle Scholar
  370. Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A.G., Fletcher, L., Kontar, E.P., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N., Vlahos, L.: 2011, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  371. Zouganelis, I., Maksimovic, M., Meyer-Vernet, N., Lamy, H., Issautier, K.: 2004, A transonic collisionless model of the solar wind. Astrophys. J. 606, 542.  DOI. ADS. ADSCrossRefGoogle Scholar
  372. Zouganelis, I., Meyer-Vernet, N., Landi, S., Maksimovic, M., Pantellini, F.: 2005, Acceleration of weakly collisional solar-type winds. Astrophys. J. Lett. 626, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  373. Zweibel, E.G., Yamada, M.: 2009, Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Astronomical InstituteCzech Academy of SciencesOndřejovCzech Republic
  2. 2.CNRS, PSL, LESIAObservatoire de ParisMeudonFrance
  3. 3.DAMTPUniversity of CambridgeCambridgeUK
  4. 4.College of ScienceGeorge Mason UniversityFairfaxUSA
  5. 5.NASA Goddard Space Flight CenterGreenbeltUSA
  6. 6.Northumbria UniversityNewcastle Upon TyneUK
  7. 7.STFC Rutherford Appleton LaboratoryChilton, DidcotUK
  8. 8.Space Research Centre (CBK PAN)WarsawPoland
  9. 9.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  10. 10.Leibniz-Institut für AstrophysikPotsdamGermany
  11. 11.Imperial College LondonLondonUK
  12. 12.University of Applied Sciences and Arts Northwestern SwitzerlandWindischSwitzerland
  13. 13.ESACEuropean Space AgencyMadridSpain
  14. 14.Institute of Experimental PhysicsSASKošiceSlovak Republic

Personalised recommendations