Advertisement

Solar Physics

, 292:88 | Cite as

Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

  • S. M. White
  • K. Iwai
  • N. M. Phillips
  • R. E. Hills
  • A. Hirota
  • P. Yagoubov
  • G. Siringo
  • M. Shimojo
  • T. S. Bastian
  • A. S. Hales
  • T. Sawada
  • S. Asayama
  • M. Sugimoto
  • R. G. Marson
  • W. Kawasaki
  • E. Muller
  • T. Nakazato
  • K. Sugimoto
  • R. Brajša
  • I. Skokić
  • M. Bárta
  • S. Kim
  • A. J. Remijan
  • I. de Gregorio
  • S. A. Corder
  • H. S. Hudson
  • M. Loukitcheva
  • B. Chen
  • B. De Pontieu
  • G. D. Fleishmann
  • D. E. Gary
  • A. Kobelski
  • S. Wedemeyer
  • Y. Yan
Article

Abstract

The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at \(\lambda = 3~\mbox{mm}\) and 5900 K at \(\lambda = 1.3~\mbox{mm}\). These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about \(25''\), the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

Keywords

Radio emission Chromosphere Heating, chromospheric Instrumentation and data management 

Notes

Acknowledgments

The ALMA solar commissioning effort was supported by ALMA Development grants from NRAO (for the North American contribution), ESO (for the European contribution), and NAOJ (for the East Asia contribution). The help and cooperation of the ALMA Extension and Optimization of Capabilities (EOC) team as well as the engineers, telescope operators, astronomers-on-duty, and staff at the ALMA Operations Support Facility was crucial for the success of solar commissioning campaigns in 2014 and 2015. We are grateful to the ALMA project for making solar observing with ALMA possible. R. Brajša acknowledges partial support of this work by the Croatian Science Foundation under the project 6212 “Solar and Stellar Variability” and by the European Commission FP7 project SOLARNET (312495, 2013 – 2017), which is an Integrated Infrastructure Initiative (I3) supported by the FP7 Capacities Programme. G. Fleishmann acknowledges support from NSF grants AGS-1250374 and AGS-1262772. Travel by Y. Yan to ALMA for the 2015 commissioning campaign was partially supported by NSFC grant 11433006.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest affecting this article.

References

  1. Bastian, T.S., Ewell, M.W., Zirin, H.: 1993, The center-to-limb brightness variation of the sun at \(\mbox{lambda} = 850~\mbox{microns}\). Astrophys. J. 415, 364.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Brajša, R., Benz, A.O., Temmer, M., Jurdana-Šepić, R., Šaina, B., Wöhl, H.: 2007, An interpretation of the coronal holes’ visibility in the millimeter wavelength range. Solar Phys. 245, 167.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Brogan, C.L., Hunter, T.R.: 2014, ALMA Single-Dish Imaging Parameters. NAASC Memo 114 (draft). Google Scholar
  4. Broguière, D., Lucas, R., Pardo, J., Roche, J.-C.: 2011, TELCAL: The on-line calibration software for ALMA. In: Evans, I.N., Accomazzi, A., Mink, D.J., Rots, A.H. (eds.) Astronomical Data Analysis Software and Systems XX CS-442, Astron. Soc. Pacific, San Francisco, 277. ADS. Google Scholar
  5. Buhl, D., Tlamicha, A.: 1970, The mapping of the Sun at 3.5 MM. Astron. Astrophys. 5, 102. ADS. ADSGoogle Scholar
  6. Carlsson, M., Hansteen, V.H., Gudiksen, B.V., Leenaarts, J., De Pontieu, B.: 2016, A publicly available simulation of an enhanced network region of the Sun. Astron. Astrophys. 585, A4.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Casalta, J.M., Molins, A., Bassas, M., Canchado, M., Creus, E., Tomàs, A.: 2008, ALMA front end amplitude calibration device design and measured performances. In: Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Proc. IEEE 7018, 701838.  DOI. ADS. CrossRefGoogle Scholar
  8. Chamberlin, R.A., Bally, J.: 1995, The observed relationship between the South pole 225-GHz atmospheric opacity and the water vapor column density. Int. J. Infrared Millim. Waves 16, 907.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Clark, T.A., Naylor, D.A., Tompkins, G.J., Duncan, W.D.: 1992, Extension of the solar limb and sub-millimeter and millimeter wavelengths. Solar Phys. 140, 393.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Coates, R.J.: 1958, Measurement of solar radiation and atmospheric attenuation at 4.3-millimeters wavelength. Proc. IRE 46, 122. CrossRefGoogle Scholar
  11. Delgado, G., Otárola, A., Belitsky, V., Urbain, D.: 1999, The Determination of Precipitable Water Vapour at Llano de Chajnantor from Observations of the 183 GHz Water Line. ALMA Memo 271, Joint ALMA Observatory, Santiago. Google Scholar
  12. Ekers, R.D., Rots, A.H.: 1979, Short spacing synthesis from a primary beam scanned interferometer. In: van Schooneveld, C. (ed.) IAU Colloq. 49: Image Formation from Coherence Functions in Astronomy 61, Reidel, Dordrecht.  DOI. ADS. Google Scholar
  13. Hills, R.E.: 2016, PM Antenna Servo Characterization. ALMA CSV-3243 Report. Google Scholar
  14. Hills, R.E.: 2010, Correcting for the effects of the atmosphere. In: ALMA Newsletter 6, ESO, Garching, 2. ADS. Google Scholar
  15. Iguchi, S., Morita, K.-I., Sugimoto, M., Vila Vilaró, B., Saito, M., Hasegawa, T., Kawabe, R., Tatematsu, K., Seiichi, S., Kiuchi, H., Okumura, S.K., Kosugi, G., Inatani, J., Takakuwa, S., Iono, D., Kamazaki, T., Ogasawara, R., Ishiguro, M.: 2009, The Atacama Compact Array (ACA). Publ. Astron. Soc. Japan 61, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Iwai, K.: 2016a, Fast Scan Pattern Simulation. ALMA CSV-3244 Solar Commissioning Report. Google Scholar
  17. Iwai, K.: 2016b, Nonlinearity of ALMA Antennas in Detuning Mode 1. ALMA CSV-3246 Solar Commissioning Report. Google Scholar
  18. Iwai, K., Shimojo, M.: 2015, Observation of the chromospheric sunspot at millimeter range with the Nobeyama 45 m telescope. Astrophys. J. 804, 48.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Jewell, P.R.: 2002, Millimeter wave calibration techniques. In: Stanimirovic, S., Altschuler, D., Goldsmith, P., Salter, C. (eds.) Single-Dish Radio Astronomy: Techniques and Applications CS-278, Astron. Soc. Pacific, San Francisco, 313. ADS. Google Scholar
  20. Kaufmann, P., Strauss, F.M., Schaal, R.E., Laporte, C.: 1982, The use of the large mm-wave antenna at Itapetinga in high-sensitivity solar research. Solar Phys. 78, 389.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Koda, J., Scoville, N., Sawada, T., La Vigne, M.A., Vogel, S.N., Potts, A.E., Carpenter, J.M., Corder, S.A., Wright, M.C.H., White, S.M., Zauderer, B.A., Patience, J., Sargent, A.I., Bock, D.C.J., Hawkins, D., Hodges, M., Kemball, A., Lamb, J.W., Plambeck, R.L., Pound, M.W., Scott, S.L., Teuben, P., Woody, D.P.: 2009, Dynamically driven evolution of the interstellar medium in M51. Astrophys. J. Lett. 700, L132.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Kosugi, T., Ishiguro, M., Shibasaki, K.: 1986, Polar-cap and coronal-hole-associated brightenings of the sun at millimeter wavelengths. Publ. Astron. Soc. Japan 38, 1. ADS. ADSGoogle Scholar
  23. Kundu, M.R.: 1970, Solar active regions at millimeter wavelengths. Solar Phys. 13, 348.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Kutner, M.L., Ulich, B.L.: 1981, Recommendations for calibration of millimeter-wavelength spectral line data. Astrophys. J. 250, 341.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Labrum, N.R.: 1978, Evidence on chromospheric structure from observations of solar brightness distribution at millimeter wavelengths. Proc. Astron. Soc. Aust. 3, 256. ADS. ADSCrossRefGoogle Scholar
  26. Lindsey, C., Hudson, H.S.: 1976, Solar limb brightening in submillimeter wavelengths. Astrophys. J. 203, 753.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Linsky, J.L.: 1973a, A recalibration of the quiet sun millimeter spectrum based on the moon as an absolute radiometric standard. Solar Phys. 28, 409.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Linsky, J.L.: 1973b, The Moon as a proposed radiometric standard for microwave and infrared observations of extended sources. Astrophys. J. Suppl. 25, 163.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Loukitcheva, M., Solanki, S.K., White, S.M.: 2006, The dynamics of the solar chromosphere: comparison of model predictions with millimeter-interferometer observations. Astron. Astrophys. 456, 713.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Loukitcheva, M., Solanki, S.K., White, S.M.: 2014, The chromosphere above sunspots at millimeter wavelengths. Astron. Astrophys. 561, A133.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Loukitcheva, M., Solanki, S.K., Carlsson, M., White, S.M.: 2015, Millimeter radiation from a 3D model of the solar atmosphere. I. Diagnosing chromospheric thermal structure. Astron. Astrophys. 575, A15.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Loukitcheva, M., White, S.M., Solanki, S.K., Fleishman, G.D., Carlsson, M.: 2017, Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field. Astron. Astrophys. 601, A43.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Lucas, R.: 2012, Temperature Scale Calibration. Unpublished talk for ALMA staff. Google Scholar
  34. Mangum, J.: 2002, Load calibration at millimeter and submillimeter wavelengths. ALMA Memo 434, Joint ALMA Observatory, Santiago. Google Scholar
  35. Mangum, J.G.: 1993, Main-beam efficiency measurements of the Caltech Submillimeter Observatory. Publ. Astron. Soc. Pac. 105, 117.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Mangum, J.G., Emerson, D.T., Greisen, E.W.: 2007, The On The Fly imaging technique. Astron. Astrophys. 474, 679.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Newstead, R.A.: 1969, Solar limb brightening and enhancement measurements at 1.2 mm. Solar Phys. 6, 56.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Nikolic, B., Bolton, R.C., Graves, S.F., Hills, R.E., Richer, J.S.: 2013, Phase correction for ALMA with 183 GHz water vapour radiometers. Astron. Astrophys. 552, A104.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Noyes, R.W., Beckers, J.M., Low, F.J.: 1968, Observational studies of the solar intensity profile in the far infrared and millimeter regions. Solar Phys. 3, 36.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Pardo, J.R., Cernicharo, J., Serabyn, E.: 2001, Atmospheric Transmission at Microwaves (ATM): An improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. 49, 1683.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Phillips, N., Hills, R., Bastian, T., Hudson, H., Marson, R., Wedemeyer, S.: 2015, Fast single-dish scans of the Sun using ALMA. In: Iono, D., Tatematsu, K., Wootten, A., Testi, L. (eds.) Revolution in Astronomy with ALMA: The Third Year CS-499, Astron. Soc. Pacific, San Francisco, 347. ADS. Google Scholar
  42. Righini, G., Simon, M.: 1976, Solar brightness distribution at 350 and 450 microns. Astrophys. J. 203, L95.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Shimojo, M., Bastian, T.S., Hales, A., White, S.M., Iwai, K., Hills, R.E., Hirota, A., Phillips, N.M., Sawada, T., Yagoubov, P., Siringo, G., Asayama, S., Sugimoto, M., Brajša, R., Skokić, I., Bárta, M., Kim, S., de Gregorio, I., Corder, S.A., Hudson, H.S., Wedemeyer, S., Gary, D.E., De Pontieu, B., Loukitcheva, M., Fleishman, G.D., Chen, B., Kobelski, A., Yan, Y.: 2017, Observing the Sun with ALMA: High Resolution Interferometric Imaging. Solar Phys. 292.  DOI.
  44. Sinton, W.M.: 1952, Detection of millimeter wave solar radiation. Phys. Rev. 86, 424.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Sugimoto, M., Kosugi, G., Iguchi, S., Iwashita, H., Saito, M., Inatani, J., Takahashi, T., Tasaki, M., Nakanishi, K., McMullin, J.P., Puga, J.P., Hoff, B., Norambuena, J., Kamazaki, T., Vila-Vilar, B., Ikenoue, B., Morita, K.-I., Asayama, S., Yamada, M., Kiuchi, H.: 2009, Beam pattern measurements and observational evaluations of the ALMA/ACA 12-m antenna. Publ. Astron. Soc. Japan 61, 451.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Tamura, Y., Sugimoto, M.: 2012, Preliminary Analysis of the Forward Efficiency. ALMA System Verification Report SYS #132, Joint ALMA Observatory, Santiago. Google Scholar
  47. Tolbert, C.W., Straiton, A.W.: 1961, Solar emission at millimeter wavelengths. Astrophys. J. 134, 91.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Ulich, B.L., Haas, R.W.: 1976, Absolute calibration of millimeter-wavelength spectral lines. Astrophys. J. Suppl. 30, 247.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Urpo, S., Krüger, A., Hildebrandt, J.: 1986, Millimetre wave sources in the solar corona. Astron. Astrophys. 163, 340. ADS. ADSGoogle Scholar
  50. van Kempen, T., Corder, S., Lucas, R., Mauersberger, R.: 2012, How ALMA is calibrated. In: ALMA Newsletter 9, ESO, Garching, 8. ADS. Google Scholar
  51. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1976, Structure of the solar chromosphere. II. The underlying photosphere and temperature-minimum region. Astrophys. J. Suppl. 30, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Vršnak, B., Pohjolainen, S., Urpo, S., Terasranta, H., Brajša, R., Ruždjak, V., Mouradian, Z., Jurac, S.: 1992, Large-scale patterns on the sun observed in the millimetric wavelength range. Solar Phys. 137, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Warmels, R., Remijan, A.J.: 2017, ALMA Cycle 5 Technical Handbook, Joint ALMA Observatory, Santiago. Google Scholar
  54. Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Loukitcheva, M., Fleck, B., Kontar, E.P., De Pontieu, B., Yagoubov, P., Tiwari, S.K., Soler, R., Black, J.H., Antolin, P., Scullion, E., Gunár, S., Labrosse, N., Ludwig, H.-G., Benz, A.O., White, S.M., Hauschildt, P., Doyle, J.G., Nakariakov, V.M., Ayres, T., Heinzel, P., Karlicky, M., Van Doorsselaere, T., Gary, D., Alissandrakis, C.E., Nindos, A., Solanki, S.K., Rouppe van der Voort, L., Shimojo, M., Kato, Y., Zaqarashvili, T., Perez, E., Selhorst, C.L., Barta, M.: 2016, Solar science with the Atacama Large Millimeter/submillimeter Array – A new view of our Sun. Space Sci. Rev. 200, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Wedemeyer-Böhm, S., Ludwig, H.G., Steffen, M., Leenaarts, J., Freytag, B.: 2007, Inter-network regions of the Sun at millimetre wavelengths. Astron. Astrophys. 471, 977.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. White, S.M.: 1999, Radio versus euv/x-ray observations of the solar atmosphere. Solar Phys. 190, 309.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Whitehurst, R.N., Copeland, J., Mitchell, F.H.: 1957, Solar radiation and atmospheric attenuation at 6-millimeter wavelength. J. Appl. Phys. 28, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. Wootten, A., Thompson, A.R.: 2009, The Atacama Large Millimeter/submillimeter Array. IEEE Proc. 97, 1463.  DOI. ADS. ADSCrossRefGoogle Scholar
  59. Yagoubov, P.A.: 2013, Solar observations with ALMA – How to minimize saturation in SIS mixers. In: 38th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, New York, 1.  DOI. ADS. Google Scholar
  60. Yagoubov, P.A., Murk, A., Wylde, R., Bell, G., Tan, G.H.: 2011, Calibration loads for ALMA. In: 36th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, New York, 1.  DOI. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2017

Authors and Affiliations

  • S. M. White
    • 1
  • K. Iwai
    • 2
  • N. M. Phillips
    • 3
    • 4
  • R. E. Hills
    • 5
  • A. Hirota
    • 3
    • 7
  • P. Yagoubov
    • 6
  • G. Siringo
    • 3
    • 4
  • M. Shimojo
    • 7
  • T. S. Bastian
    • 8
  • A. S. Hales
    • 3
    • 8
  • T. Sawada
    • 3
    • 7
  • S. Asayama
    • 3
    • 7
  • M. Sugimoto
    • 7
  • R. G. Marson
    • 9
  • W. Kawasaki
    • 7
  • E. Muller
    • 7
  • T. Nakazato
    • 7
  • K. Sugimoto
    • 7
  • R. Brajša
    • 10
  • I. Skokić
    • 11
  • M. Bárta
    • 11
  • S. Kim
    • 12
  • A. J. Remijan
    • 8
  • I. de Gregorio
    • 3
    • 4
  • S. A. Corder
    • 3
    • 8
  • H. S. Hudson
    • 13
  • M. Loukitcheva
    • 14
    • 15
    • 16
  • B. Chen
    • 14
  • B. De Pontieu
    • 17
  • G. D. Fleishmann
    • 14
  • D. E. Gary
    • 14
  • A. Kobelski
    • 18
  • S. Wedemeyer
    • 19
  • Y. Yan
    • 20
  1. 1.Space Vehicles DirectorateAir Force Research LaboratoryKirtland AFBUSA
  2. 2.National Institute of Information and Communications TechnologyKoganeiJapan
  3. 3.Joint ALMA Observatory (JAO)VitacuraChile
  4. 4.European Southern ObservatoryVitacuraChile
  5. 5.Astrophysics GroupCavendish LaboratoryCambridgeUK
  6. 6.European Southern Observatory (ESO)Garching bei MünchenGermany
  7. 7.National Astronomical Observatory of Japan (NAOJ)MitakaJapan
  8. 8.National Radio Astronomy Observatory (NRAO)CharlottesvilleUSA
  9. 9.National Radio Astronomy Observatory (NRAO)Pete V. Domenici Science Operations CenterSocorroUSA
  10. 10.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  11. 11.Astronomical InstituteCzech Academy of SciencesOndřejovCzech Republic
  12. 12.Korea Astronomy and Space Science InstituteDaejeonRepublic of Korea
  13. 13.School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  14. 14.Center For Solar-Terrestrial ResearchNew Jersey Institute of TechnologyNewarkUSA
  15. 15.Max-Planck-Institut for SonnensystemforschungGöttingenGermany
  16. 16.Astronomical InstituteSt. Petersburg UniversitySt. PetersburgRussia
  17. 17.Lockheed Martin Solar & Astrophysics LabPalo AltoUSA
  18. 18.Center for Space Plasma and Aeronomic ResearchThe University of Alabama HuntsvilleHuntsvilleUSA
  19. 19.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  20. 20.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina

Personalised recommendations