Solar Physics

, 292:101 | Cite as

A New Solar Spectrum from 656 to 3088 nm

  • M. Meftah
  • L. Damé
  • D. Bolsée
  • N. Pereira
  • D. Sluse
  • G. Cessateur
  • A. Irbah
  • A. Sarkissian
  • D. Djafer
  • A. Hauchecorne
  • S. Bekki
Article

Abstract

The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR–IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS 3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW m−2 nm−1 (1 \(\sigma\)), which is higher than recent ground-based evaluations.

Keywords

Solar irradiance Instrumentation and data management International space station Instrumental effects 

Notes

Acknowledgments

The SOLAR/SOLSPEC team acknowledges the support from Centre National de la Recherche Scientifique (CNRS, France), the PROgramme de Développement d’Expériences scientifiques Office (PRODEX), the Belgian Federal Science Policy Office (BELSPO) through the ESA–PRODEX program (contract 4000110593 for 2016 – 2017), the Solar-Terrestrial Centre of Excellence (STCE) and the Bundesministerium für Forschung und Technologie (Germany). The authors would like to thank Jerald Harder (LASP) and Juan Fontenla (NorthWest Research Associates) for their help. The authors would also like to thank the anonymous referee for valuable comments and suggestions that improved the quality of the manuscript.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. BenMoussa, A., Gissot, S., Schühle, U., Del Zanna, G., Auchère, F., Mekaoui, S., Jones, A.R., Walton, D., Eyles, C.J., Thuillier, G., Seaton, D., Dammasch, I.E., Cessateur, G., Meftah, M., Andretta, V., Berghmans, D., Bewsher, D., Bolsée, D., Bradley, L., Brown, D.S., Chamberlin, P.C., Dewitte, S., Didkovsky, L.V., Dominique, M., Eparvier, F.G., Foujols, T., Gillotay, D., Giordanengo, B., Halain, J.P., Hock, R.A., Irbah, A., Jeppesen, C., Judge, D.L., Kretzschmar, M., McMullin, D.R., Nicula, B., Schmutz, W., Ucker, G., Wieman, S., Woodraska, D., Woods, T.N.: 2013, On-orbit degradation of solar instruments. Solar Phys. 288, 389.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bolsée, D.: 2012, Métrologie de la spectrophotométrie solaire absolue: principes, mise en oeuvre et résultats ; instrument solspec à bord de la station spatiale internationale. Ph.D. thesis, Université libre de Bruxelles, École polytechnique de Bruxelles. Google Scholar
  3. Bolsée, D., Pereira, N., Decuyper, W., Gillotay, D., Yu, H., Sperfeld, P., Pape, S., Cuevas, E., Redondas, A., Hernandéz, Y., Weber, M.: 2014, Accurate determination of the TOA solar spectral NIR irradiance using a primary standard source and the bouguer-langley technique. Solar Phys. 289, 2433.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bolsée, D., Pereira, N., Cuevas, E., García, R., Redondas, A.: 2016, Comments to the article by Thuillier et al. “The infrared solar spectrum measured by the SOLSPEC spectrometer onboard the international space station” on the interpretation of ground-based measurements at the izaña site. Solar Phys. 291, 2473.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: 1999, SCIAMACHY: mission objectives and measurement modes. J. Atmos. Sci. 56, 127.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Fontenla, J.M., Stancil, P.C., Landi, E.: 2015, Solar spectral irradiance, solar activity, and the near-ultra-violet. Astrophys. J. 809, 157.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116, D20108.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Kondratyev, K.Y., Andreev, S.D., Badinov, I.Y., Grishechkin, V.S., Popova, L.C.: 1965, Atmospheric optics investigations on Mt. Elbrus. Appl. Opt. 4, 1069.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder minimum. Geophys. Res. Lett. 27, 2425.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Meftah, M., Hauchecorne, A., Irbah, A., Cessateur, G., Bekki, S., Damé, L., Bolsée, D., Pereira, N.: 2016, Solar spectral irradiance at 782 nm as measured by the SES sensor onboard Picard. Solar Phys. 291, 1043.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Menang, K.P., Coleman, M.D., Gardiner, T.D., Ptashnik, I.V., Shine, K.P.: 2013, A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements. J. Geophys. Res., Atmos. 118, 5319.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Pagaran, J., Weber, M., Burrows, J.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Pagaran, J., Harder, J.W., Weber, M., Floyd, L.E., Burrows, J.P.: 2011, Intercomparison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Solar Phys. 214, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, SOLAR/SOLSPEC: scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Solar Phys. 257, 185.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Thuillier, G., Harder, J.W., Shapiro, A., Woods, T.N., Perrin, J.-M., Snow, M., Sukhodolov, T., Schmutz, W.: 2015, The infrared solar spectrum measured by the SOLSPEC spectrometer onboard the international space station. Solar Phys. 290, 1581.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Weber, M.: 2015, Comment on the article by Thuillier et al. “The infrared solar spectrum measured by the SOLSPEC spectrometer onboard the international space station”. Invited review. Solar Phys. 290, 1601.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys. Res. Lett. 36, L01101.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • M. Meftah
    • 1
  • L. Damé
    • 1
  • D. Bolsée
    • 2
  • N. Pereira
    • 2
  • D. Sluse
    • 2
  • G. Cessateur
    • 2
  • A. Irbah
    • 1
  • A. Sarkissian
    • 1
  • D. Djafer
    • 3
  • A. Hauchecorne
    • 1
  • S. Bekki
    • 1
  1. 1.Université Paris Saclay, Université Paris VI–Pierre et Marie Curie, UVSQ, CNRS/INSULATMOS-IPSLGuyancourtFrance
  2. 2.Belgian Institute for Space Aeronomy (BIRA-IASB)BrusselsBelgium
  3. 3.Unité de Recherche Appliquée en Energies Renouvelables, URAERCentre de Développement des Energies Renouvelables, CDERGhardaïaAlgeria

Personalised recommendations