Solar Physics

, 292:90 | Cite as

Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011

  • D. Rodkin
  • F. Goryaev
  • P. Pagano
  • G. Gibb
  • V. Slemzin
  • Y. Shugay
  • I. Veselovsky
  • D. H. Mackay
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients


We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4 – 7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2 – 4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.


MHD Magnetic field Coronal mass ejections Solar wind Models 



The authors are grateful to Jie Zhang and Nat Gopalswamy as the ISEST coordinators for supporting our studies of coronal sources of ICMEs. We thank Ian Richardson and Hilary Cane for their list of Near-Earth Interplanetary Coronal Mass Ejections,7 CDAW Data Centre,8 and CACTus software package,9 which we used in our investigations. The authors thank the GOES, SDO/AIA, and ACE research teams for their open data policy. We are grateful for the opportunity to use the results of the simulation obtained by the WSA-Enlil Cone and DBM models.10 This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 647214). We acknowledge the use of the open source ( ) MPI-AMRVAC software, relying on coding efforts from C. Xia, O. Porth, and R. Keppens. The computational work for this article was carried out on the joint STFC and SFC (SRIF) funded clusters at the University of St Andrews (Scotland, UK). The work is partially supported by RFBR grants 17-02-00787, 14-02-00945 and the P7 Program of the Russian Academy of Sciences.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2017_1109_MOESM1_ESM.wmv (5.3 mb)
(WMV 5.3 MB) (354 kb)
(MOV 354 kB) (293 kb)
(MOV 293 kB)
11207_2017_1109_MOESM4_ESM.wmv (5.5 mb)
(WMV 5.5 MB)
11207_2017_1109_MOESM5_ESM.avi (748 kb)
(AVI 748 kB)
11207_2017_1109_MOESM6_ESM.wmv (1.8 mb)
(WMV 1.8 MB)


  1. Akmal, A., Raymond, J.C., Vourlidas, A., Thompson, B., Ciaravella, A., Ko, Y.-K., Uzzo, M., Wu, R.: 2001, SOHO observations of a coronal mass ejection. Astrophys. J. 553, 922.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Borgazzi, A., Lara, A., Echer, E., Alves, M.V.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  4. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cheng, X., Zhang, J., Liu, Y., Ding, M.D.: 2011, Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys. J. Lett. 732, L25.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Cheng, X., Zhang, J., Saar, S.H., Ding, M.D.: 2012, Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 761, 62.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W.: 2013, The driver of coronal mass ejections in the low corona: A flux rope. Astrophys. J. 763, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Ciaravella, A., Raymond, J.C., Reale, F., Strachan, L., Peres, G.: 2001, 1997 December 12 helical coronal mass ejection. II. Density, energy estimates, and hydrodynamics. Astrophys. J. 557, 351.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Colaninno, R.C., Vourlidas, A.: 2015, Using multiple-viewpoint observations to determine the interaction of three coronal mass ejections observed on 2012 March 5. Astrophys. J. 815, 70.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. DeForest, C.E., Howard, T.A., McComas, D.J.: 2013, Tracking coronal features from the low corona to Earth: A quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J. 769, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Dere, K.P.: 2007, Ionization rate coefficients for the elements hydrogen through zinc. Astron. Astrophys. 466, 771.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Dere, K.P., Landi, E., Young, P.R., Del Zanna, G., Landini, M., Mason, H.E.: 2009, CHIANTI – an atomic database for emission lines. IX. ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498, 915.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Feldman, U., Landi, E., Schwadron, N.A.: 2005, On the sources of fast and slow solar wind. J. Geophys. Res. 110, A07109.  DOI. ADS. ADSGoogle Scholar
  19. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1998, On the slow solar wind. Space Sci. Rev. 86, 51.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Gibb, G.P.S., Mackay, D.H., Green, L.M., Meyer, K.A.: 2014, Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms. Astrophys. J. 782, 71.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009a, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22.  DOI. ADS. ADSGoogle Scholar
  23. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009b, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22.  DOI. ADS. ADSGoogle Scholar
  24. Gopalswamy, N., Mäkelä, P., Xie, H., Yashiro, S.: 2013, Testing the empirical shock arrival model using quadrature observations. Space Weather 11, 661.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Goryaev, F.F., Parenti, S., Urnov, A.M., Oparin, S.N., Hochedez, J.-F., Reale, F.: 2010, An iterative method in a probabilistic approach to the spectral inverse problem. Differential emission measure from line spectra and broadband data. Astron. Astrophys. 523, A44.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space, AGU Monograph Ser. 58, 343. ADS. Google Scholar
  27. Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Antiochos, S.K.: 2011, Constraints on coronal mass ejection evolution from in situ observations of ionic charge states. Astrophys. J. 730, 103.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Hundhausen, A.J., Gilbert, H.E., Bame, S.J.: 1968, Ionization state of the interplanetary plasma. J. Geophys. Res. 73, 5485.  DOI. ADSCrossRefGoogle Scholar
  30. Jian, L.K., MacNeice, P.J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.S., Riley, P., Sokolov, I.V., Evans, R.M.: 2015, Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13, 316.  DOI. ADSCrossRefGoogle Scholar
  31. Kilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y.: 2014, Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmos. Solar-Terr. Phys. 107, 12.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Ko, Y.-K., Fisk, L.A., Geiss, J., Gloeckler, G., Guhathakurta, M.: 1997, An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Solar Phys. 171, 345. ADS. ADSCrossRefGoogle Scholar
  33. Kumar, A., Rust, D.M.: 1996, Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 15667.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lara, A., Borgazzi, A.I.: 2009, Dynamics of interplanetary CMEs and associated type II bursts. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 287.  DOI. ADS. Google Scholar
  35. Lee, J.-Y., Raymond, J.C., Ko, Y.-K., Kim, K.-S.: 2009, Three-dimensional structure and energy balance of a coronal mass ejection. Astrophys. J. 692, 1271.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Lepri, S.T., Laming, J.M., Rakowski, C.E., von Steiger, R.: 2012, Spatially dependent heating and ionization in an ICME observed by both ACE and Ulysses. Astrophys. J. 760, 105.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J. 759, 68.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., Li, Y., Laming, J.M., MacNeice, P.J., Linker, J.A.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J. 740, 112.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Mackay, D.H., Green, L.M., van Ballegooijen, A.: 2011, Modeling the dispersal of an active region: Quantifying energy input into the corona. Astrophys. J. 729, 97.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., Yashiro, S.: 2013, Coronal hole influence on the observed structure of interplanetary CMEs. Solar Phys. 284, 59.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Manoharan, P.K.: 2010, Ooty interplanetary scintillation – Remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastätter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Solar Phys. 290, 1775.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. McNeice, P., Elliot, B., Acebal, A.: 2011, Validation of community models. Space Weather 9, S10003.  DOI. ADSGoogle Scholar
  45. Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. J. Geophys. Res. 117, A01103.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: High coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Odstrčil, D.: 1994, Interactions of solar wind streams and related small structures. J. Geophys. Res. 99, 17.  DOI. ADS. ADSGoogle Scholar
  50. Odstrčil, D., Pizzo, V.J.: 1999, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Odstrčil, D., Dryer, M., Smith, Z.: 1996, Propagation of an interplanetary shock along the heliospheric plasma sheet. J. Geophys. Res. 101, 19973.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Owens, M., Cargill, P.: 2004, Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors. Ann. Geophys. 22, 661.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Pagano, P., Mackay, D.H., Poedts, S.: 2013a, Effect of gravitational stratification on the propagation of a CME. Astron. Astrophys. 560, A38.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Pagano, P., Mackay, D.H., Poedts, S.: 2013b, Magnetohydrodynamic simulations of the ejection of a magnetic flux rope. Astron. Astrophys. 554, A77.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Pagano, P., Mackay, D.H., Poedts, S.: 2014, Simulating AIA observations of a flux rope ejection. Astron. Astrophys. 568, A120.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Pagano, P., Reale, F., Orlando, S., Peres, G.: 2007, MHD evolution of a fragment of a CME core in the outer solar corona. Astron. Astrophys. 464, 753.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  57. Pagano, P., Raymond, J.C., Reale, F., Orlando, S.: 2008, Modeling magnetohydrodynamics and non-equilibrium SoHO/UVCS line emission of CME shocks. Astron. Astrophys. 481, 835.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. Pizzo, V., Millward, G., Parsons, A., Biesecker, D., Hill, S., Odstrcil, D.: 2011, Wang–Sheeley–Arege–Enlil cone model transitions to operations. Space Weather 9, S033004.  DOI. ADSGoogle Scholar
  59. Porth, O., Xia, C., Hendrix, T., Moschou, S.P., Keppens, R.: 2014, MPI-AMRVAC for solar and astrophysics. Astron. Astrophys. Suppl. 214, 4.  DOI. ADS. ADSGoogle Scholar
  60. Reinard, A.A., Lynch, B.J., Mulligan, T.: 2012, Composition structure of interplanetary coronal mass ejections from multispacecraft observations, modeling, and comparison with numerical simulations. Astrophys. J. 761, 175.  DOI. ADS. ADSCrossRefGoogle Scholar
  61. Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804.  DOI. ADS. ADSCrossRefGoogle Scholar
  62. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  63. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229.  DOI. ADS. ADSCrossRefGoogle Scholar
  64. Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J.: 2015, Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J. 806, 271.  DOI. ADS. ADSCrossRefGoogle Scholar
  65. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  66. Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57.  DOI. ADS. ADSCrossRefGoogle Scholar
  67. Urnov, A.M., Goryaev, F., Oparin, S.: 2012, On spectroscopic diagnostics of hot optically thin plasmas. In: Shevelko, V., Tawara, H. (eds.) Atomic Processes in Basic and Applied Physics, Springer Series on Atomic, Optical, and Plasma Physics 68, 249.  DOI. ADS. CrossRefGoogle Scholar
  68. Urnov, A.M., Goryaev, F.F., Bertschinger, G., Kunze, H.J., Marchuk, O.: 2007, On the verification of atomic data for \(K_{\alpha}\) radiation spectra from the TEXTOR tokamak. JETP Lett. 85, 374.  DOI. ADSCrossRefGoogle Scholar
  69. Vršnak, B.: 2001, Deceleration of coronal mass ejections. Solar Phys. 202, 173.  DOI. ADS. ADSCrossRefGoogle Scholar
  70. Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937.  DOI. ADS. ADSCrossRefGoogle Scholar
  71. Vršnak, B., Vrbanec, D., Čalogović, J.: 2008, Dynamics of coronal mass ejections. The mass-scaling of the aerodynamic drag. Astron. Astrophys. 490, 811.  DOI. ADS. ADSCrossRefGoogle Scholar
  72. Vršnak, B., Ruždjak, D., Sudar, D., Gopalswamy, N.: 2004, Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 423, 717.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43.  DOI. ADS. CrossRefGoogle Scholar
  74. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  75. Wang, Y.-M.: 2012, Semiempirical models of the slow and fast solar wind. Space Sci. Rev. 172, 123.  DOI. ADS. ADSCrossRefGoogle Scholar
  76. Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: Observations. Living Rev. Solar Phys. 9, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  77. Wood, B.E., Wu, C.-C., Rouillard, A.P., Howard, R.A., Socker, D.G.: 2012, A coronal hole’s effects on coronal mass ejection shock morphology in the inner heliosphere. Astrophys. J. 755, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  78. Yiğit, E., Frey, H.U., Moldwin, M.B., Immel, T.J., Ridley, A.J.: 2016, Hemispheric differences in the response of the upper atmosphere to the August 2011 geomagnetic storm: A simulation study. J. Atmos. Solar-Terr. Phys. 141, 13.  DOI. ADS. ADSCrossRefGoogle Scholar
  79. Zhang, J., Cheng, X., Ding, M.-D.: 2012, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun. 3, 747.  DOI. ADS. ADSCrossRefGoogle Scholar
  80. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104.  DOI. ADS. ADSCrossRefGoogle Scholar
  81. Zhao, L., Landi, E., Zurbuchen, T.H., Fisk, L.A., Lepri, S.T.: 2014, The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from Solar Cycles 23 to 24. Astrophys. J. 793, 44.  DOI. ADS. ADSCrossRefGoogle Scholar
  82. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  3. 3.Edinburgh Parallel Computing CentreEdinburghUK
  4. 4.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  5. 5.Space Research Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations