Skip to main content
Log in

Estimating Solar Flux Density at Low Radio Frequencies Using a Sky Brightness Model

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Sky models have been used in the past to calibrate individual low radio frequency telescopes. In this article we generalize this approach from a single antenna to a two element interferometer, and formulate the problem in a way that allows us to estimate the flux density of the Sun using the normalized cross-correlations (visibilities) measured on a low resolution interferometric baseline. For wide field-of-view instruments, typically the case at low radio frequencies, this approach can provide robust absolute solar flux calibration for well characterized antennas and receiver systems. It can provide a reliable and computationally lean method for extracting parameters of physical interest using a small fraction of the voluminous interferometric data, which can be computationally prohibitively expensive to calibrate and image using conventional approaches. We demonstrate this technique by applying it to data from the Murchison Widefield Array and assess its reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bowman, J.D., Cairns, I., Kaplan, D.L., Murphy, T., Oberoi, D., Stavely-Smith, L., et al.: 2013, Publ. Astron. Soc. Aust. 30, 31. DOI .

    Article  ADS  Google Scholar 

  • Chambe, G.: 1978, Astron. Astrophys. 70, 255.

    ADS  Google Scholar 

  • Guzmán, A.E., May, J., Alvarez, H., Maeda, K.: 2011, Astron. Astrophys. 525, A138. DOI .

    Article  ADS  Google Scholar 

  • Haslam, C.G.T., Klein, U., Salter, C.J., Stoffel, H., Wilson, W.E., Cleary, M.N., et al.: 1981, Astron. Astrophys. 100, 209.

    ADS  Google Scholar 

  • Haslam, C.G.T., Salter, C.J., Stoffel, H., Wilson, W.E.: 1982, Astron. Astrophys. Suppl. 47, 1.

    ADS  Google Scholar 

  • Lantos, P., Alissandrakis, C.E., Rigaud, D.: 1992, Solar Phys. 137, 225. DOI .

    Article  ADS  Google Scholar 

  • Lawson, K.D., Mayer, C.J., Osborne, J.L., Parkinson, M.L.: 1987, Mon. Not. Roy. Astron. Soc. 225, 307. DOI .

    Article  ADS  Google Scholar 

  • Lonsdale, C.J., Cappallo, R.J., Morales, M.F., Briggs, F., Benkevitch, L., Bowman, J.D., et al.: 2009, Proc. IEEE 97, 1497. DOI .

    Article  ADS  Google Scholar 

  • Martyn, D.F.: 1948, Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 193, 44.

    Article  ADS  Google Scholar 

  • McLean, D.J., Sheridan, K.V.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics, Cambridge Univ. Press, Cambridge, 443.

    Google Scholar 

  • Mercier, C., Chambe, G.: 2012, Astron. Astrophys. 540, A18. DOI .

    Article  ADS  Google Scholar 

  • Neben, A.R., Hewitt, J.N., Bradley, R.F., Dillon, J.S., Bernardi, J., Bowman, J.D., et al.: 2016, Astrophys. J. 820, 44. DOI .

    Article  ADS  Google Scholar 

  • Oberoi, D., Matthews, L.D., Cairns, I.H., Emrich, D., Lobzin, V., Lonsdale, C.J., et al.: 2011, Astrophys. J. Lett. 728, L27. DOI .

    Article  ADS  Google Scholar 

  • Rogers, A.E.E., Bowman, J.D.: 2008, Astron. J. 136, 641. DOI .

    Article  ADS  Google Scholar 

  • Rogers, A.E.E., Pratap, P., Kratzenberg, E., Diaz, M.A.: 2004, Radio Sci. 39, 2023. DOI .

    Article  ADS  Google Scholar 

  • Smerd, S.F.: 1950, Aust. J. Sci. Res., Ser. A 3, 34.

    ADS  Google Scholar 

  • Taylor, G., Carilli, C.: 1999, In: Perley, R. (ed.) Synthesis Imaging in Radio Astronomy II, Astron. Soc. Pacific Conf. Ser. 180.

    Google Scholar 

  • Tingay, S.J., Goeke, R., Bowman, J.D., Emrich, D., Ord, S., Mitchell, D., et al.: 2013, Publ. Astron. Soc. Aust. 30, 7. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with Randall Wayth and Budi Juswardy, both at Curtin University, Australia, and their providing estimates of \(T_{\mathrm{Rec}}\) and \(\delta T_{\mathrm{Rec}}\). We also acknowledge helpful comments from Stephen White (Air Force Research Laboratory, Kirtland, NM, USA) and David Webb (Boston College, MA, USA) on an earlier version of the manuscript. This scientific work makes use of the Murchison Radio Astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people being the traditional owners of the Observatory site. Support for the operation of the MWA is provided by the Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy, NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the iVEC Petabyte Data Store and the Initiative in Innovative Computing and the CUDA Center for Excellence sponsored by NVIDIA at Harvard University. Facilities: Murchison Widefield Array.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Oberoi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberoi, D., Sharma, R. & Rogers, A.E.E. Estimating Solar Flux Density at Low Radio Frequencies Using a Sky Brightness Model. Sol Phys 292, 75 (2017). https://doi.org/10.1007/s11207-017-1096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1096-1

Keywords

Navigation