Solar Physics

, 292:63 | Cite as

A New Solar Imaging System for Observing High-Speed Eruptions: Solar Dynamics Doppler Imager (SDDI)

  • Kiyoshi Ichimoto
  • Takako T. Ishii
  • Kenichi Otsuji
  • Goichi Kimura
  • Yoshikazu Nakatani
  • Naoki Kaneda
  • Shin’Ichi Nagata
  • Satoru UeNo
  • Kumi Hirose
  • Denis Cabezas
  • Satoshi Morita
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Abstract

A new solar imaging system was installed at Hida Observatory to observe the dynamics of flares and filament eruptions. The system (Solar Dynamics Doppler Imager; SDDI) takes full-disk solar images with a field of view of \(2520~\mbox{arcsec} \times 2520~\mbox{arcsec}\) at multiple wavelengths around the \(\mathrm{H}\alpha\) line at 6562 Å. Regular operation was started in May 2016, in which images at 73 wavelength positions spanning from \(\mathrm{H}\alpha -9~\mathring{\mathrm{A}}\) to \(\mathrm{H}\alpha +9~\mathring{\mathrm{A}}\) are obtained every 15 seconds. The large dynamic range of the line-of-sight velocity measurements (\({\pm}\,400~\mbox{km}\,\mbox{s}^{-1}\)) allows us to determine the real motions of erupting filaments in 3D space. It is expected that SDDI provides unprecedented datasets to study the relation between the kinematics of filament eruptions and coronal mass ejections (CME), and to contribute to the real-time prediction of the occurrence of CMEs that cause a significant impact on the space environment of the Earth.

Keywords

Sun Imaging system Flare Filament eruption CME 

References

  1. Fang, C., Chen, P.-F., Li, Z., Ding, M.-D., Dai, Y., Zhang, X.-Y., Mao, W.-J., Zhang, J.-P., Li, T., Liang, Y.-J., Lu, H.-T.: 2013, A new multi-wavelength solar telescope: Optical and Near-infrared Solar Eruption Tracer (ONSET). Res. Astron. Astrophys. 13, 1509. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Filippov, B.: 2013, A filament eruption on 2010 October 21 from three viewpoints. Astrophys. J. 773, 10. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Gopalswamy, N.: 2015, The dynamics of eruptive prominences. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophys. Space Sci. Lib. 415, 381. DOI. ADS. Google Scholar
  4. Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J. 586, 562. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Hagino, M., Ichimoto, K., Kimura, G., Nakatani, Y., Kawate, T., Shinoda, K., Suematsu, Y., Hara, H., Shimizu, T.: 2014, Development of a universal tunable filter for future solar observations. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, Proc. SPIE 9151, 91515V. DOI. ADS. CrossRefGoogle Scholar
  6. Howard, T.A.: 2015, Measuring an eruptive prominence at large distances from the Sun. I. Ionization and early evolution. Astrophys. J. 806, 175. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Kuhn, J.R., Lin, H., Loranz, D.: 1991, Gain calibrating nonuniform image-array data using only the image data. Publ. Astron. Soc. Pac. 103, 1097. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Kurokawa, H., Ishiura, K., Kimura, G., Nakai, Y., Kitai, R., Funakoshi, Y., Shinkawa, T.: 1995, Observations of solar H alpha filament disappearances with a new solar flare-monitoring-telescope at Hida Observatory. J. Geomagn. Geoelectr. 47, 1043. CrossRefGoogle Scholar
  9. McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the solar dynamics observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Morimoto, T., Kurokawa, H.: 2003, A method for the determination of 3-D velocity fields of disappearing solar filaments. Publ. Astron. Soc. Japan 55, 503. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Penn, M.J.: 2000, An erupting active region filament: three-dimensional trajectory and hydrogen column density. Solar Phys. 197, 313. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Shimojo, M.: 2014, Unusual migration of the prominence activities in recent solar cycles. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather, IAU Symp. 300, 161. DOI. ADS. Google Scholar
  14. UeNo, S., Nagata, S.-i., Kitai, R., Kurokawa, H., Ichimoto, K.: 2004, The development of filter vector magnetographs for the Solar Magnetic Activity Research Telescope (SMART). In: Moorwood, A.F.M., Iye, M. (eds.) Ground-Based Instrumentation for Astronomy, Proc. SPIE 5492, 958. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kiyoshi Ichimoto
    • 1
    • 2
  • Takako T. Ishii
    • 1
  • Kenichi Otsuji
    • 1
  • Goichi Kimura
    • 1
  • Yoshikazu Nakatani
    • 1
  • Naoki Kaneda
    • 1
  • Shin’Ichi Nagata
    • 1
  • Satoru UeNo
    • 1
  • Kumi Hirose
    • 1
  • Denis Cabezas
    • 1
  • Satoshi Morita
    • 2
  1. 1.Kwasan and Hida ObservatoriesKyoto UniversityKyotoJapan
  2. 2.National Astronomical Observatory of JapanMitakaJapan

Personalised recommendations