Advertisement

Solar Physics

, 292:57 | Cite as

Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part II: In-Flight Calibration

  • G. Giono
  • R. Ishikawa
  • N. Narukage
  • R. Kano
  • Y. Katsukawa
  • M. Kubo
  • S. Ishikawa
  • T. Bando
  • H. Hara
  • Y. Suematsu
  • A. Winebarger
  • K. Kobayashi
  • F. Auchère
  • J. Trujillo Bueno
  • S. Tsuneta
  • T. Shimizu
  • T. Sakao
  • J. Cirtain
  • P. Champey
  • A. Asensio Ramos
  • J. Štěpán
  • L. Belluzzi
  • R. Manso Sainz
  • B. De Pontieu
  • K. Ichimoto
  • M. Carlsson
  • R. Casini
  • M. Goto
Article

Abstract

The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-\({\upalpha }\) line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration.

Keywords

Polarization calibration Vacuum ultraviolet Lyman-alpha Solar chromosphere CLASP 

Notes

Acknowledgements

The authors acknowledge the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP) team. The team was an international partnership between NASA Marshall Space Flight Center, National Astronomical Observatory of Japan (NAOJ), Japan Aerospace Exploration Agency (JAXA), Instituto de Astrofísica de Canarias (IAC), and Institut d’Astrophysique Spatiale; additional partners include Astronomical Institute ASCR, Lockheed Martin and University of Oslo. Japanese participation is funded by the basic research program of ISAS/JAXA, internal research funding of NAOJ, and JSPS KAKENHI Grant Numbers JP23340052, JP24740134, JP24340040, and JP25220703. US participation is funded by NASA Low Cost Access to Space (Award Number 12-SHP 12/2-0283). Spanish participation is funded by the Ministry of Economy and Competitiveness through project AYA2010-18029 (Solar Magnetism and Astrophysical Spectropolarimetry). French hardware participation was funded by Centre National d’Etudes Spatiales (CNES). J. Štěpán acknowledges the financial support by the Grant Agency of the Czech Republic through grant 16-16861S and project RVO:67985815.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Belluzzi, L., Trujillo Bueno, J., Štěpán, J.: 2012, The scattering polarization of the Ly-\(\upalpha \) lines of H i and He ii taking into account PRD and \(J\)-state interference effects. Astrophys. J. 755, L2.  DOI. ADSCrossRefGoogle Scholar
  2. Champey, P., Kobayashi, K., Winebarger, A., Cirtain, J., Hyde, D., Robertson, B., et al.: 2014, Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP). Proc. SPIE 9144, 914439.  DOI. CrossRefGoogle Scholar
  3. Champey, P., Kobayashi, K., Winebarger, A., Cirtain, J., Hyde, D., Robertson, B., et al.: 2015, VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras. Proc. SPIE 9601, 96010Z.  DOI. ADSCrossRefGoogle Scholar
  4. Elmore, D.F.: 1990, A polarization calibration technique for the advanced stokes polarimeter. NCAR Technical Note, NCAR/TN-355+STR, Boulder, Colorado.  DOI.
  5. Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III: helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319.  DOI. ADSCrossRefGoogle Scholar
  6. Giono, G., Ishikawa, R., Narukage, N., Kano, R., Katsukawa, Y., Kubo, M., et al.: 2016a, Polarization calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% polarization sensitivity in the VUV range. Part I: Pre-flight calibration. Solar Phys. 291, 3831.  DOI. ADSCrossRefGoogle Scholar
  7. Giono, G., Ishikawa, R., Narukage, N., Kano, R., Katsukawa, Y., Kubo, M., et al.: 2016b, Optical alignment of the Chromospheric Lyman-Alpha Spectro-Polarimeter using sophisticated methods to minimize activities under vacuum. Proc. SPIE 9905, 99053D.  DOI. Google Scholar
  8. Hanle, W.: 1924, Uber magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93. ADSCrossRefGoogle Scholar
  9. Ishikawa, R., Narukage, N., Kubo, M., Ishikawa, S., Kano, R., Tsuneta, S.: 2014, Strategy for realizing high-precision VUV spectro-polarimeter. Solar Phys. 289, 4727.  DOI. ADSCrossRefGoogle Scholar
  10. Ishikawa, S., Shimizu, T., Kano, R., Bando, T., Ishikawa, R., Giono, G., et al.: 2015, Development of the precise polarization modulator for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) sounding rocket experiment. Solar Phys. 290, 3081.  DOI. ADSCrossRefGoogle Scholar
  11. Kano, R., Bando, T., Narukage, N., Ishikawa, R., Tsuneta, S., Katsukawa, Y., et al.: 2012, Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP). Proc. SPIE 8443, 84434F.  DOI. CrossRefGoogle Scholar
  12. Kano, R., Trujillo Bueno, J., Winebarger, A., Auchère, F., Narukage, N., Ishikawa, R., et al.: 2017, Discovery of scattering polarization in the hydrogen Lyman-\(\upalpha \) line of the solar disk radiation. Science, submitted. Google Scholar
  13. Kobayashi, K., Tsuneta, S., Trujillo Bueno, J., Cirtain, J.W., Bando, T., Kano, R., et al.: 2012, The Chromospheric Lyman-Alpha SpectroPolarimeter: CLASP. Publ. Astron. Soc. Pac. CS-456, 233. ADSGoogle Scholar
  14. Kubo, M., Katsukawa, Y., Suematsu, Y., Kano, R., Bando, T., Narukage, N., et al.: 2016, Discovery of ubiquitous fast propagating intensity disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP). Astrophys. J.  DOI. Google Scholar
  15. Landi Degl’Innocenti, E., Landolfi, M.: 2014, Polarization in Spectral Lines. Astrophysics and Space Science Library 307, Springer, Amsterdam.  DOI. Google Scholar
  16. Lemen, J., Title, A., Akin, D., Boerner, P., Chou, C., Drake, J., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADSCrossRefGoogle Scholar
  17. Narukage, N., Auchére, F., Ishikawa, R., Kano, R., Tsuneta, S., Winebarger, A., Kobayashi, K.: 2015, Vacuum ultraviolet spectropolarimeter design for precise polarization measurements. Appl. Opt. 54, 2080.  DOI. ADSCrossRefGoogle Scholar
  18. Štěpán, J., Trujillo Bueno, J., Carlsson, M., Leenaarts, J.: 2012, The Hanle effect of the Ly\(\upalpha \) in a MHD model of the solar transition region. Astrophys. J. Lett. 758, L43.  DOI. ADSCrossRefGoogle Scholar
  19. Štěpán, J., Trujillo Bueno, J., Leenaarts, J., Carlsson, M.: 2015, Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly\(\upalpha \) line in a MHD model of the chromosphere-corona transition region. Astrophys. J. 803, 65.  DOI. ADSCrossRefGoogle Scholar
  20. Trujillo Bueno, J.: 2014, Polarized radiation observables for probing the magnetism of the outer solar atmosphere. Astron. Soc. Pacific Conf. Ser. 489, 137. ADSGoogle Scholar
  21. Trujillo Bueno, J., Štěpán, J., Casini, R.: 2011, The Hanle effect of the hydrogen Ly\({\upalpha }\) line for probing the magnetism of the solar transition region. Astrophys. J. 738, L11.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • G. Giono
    • 1
  • R. Ishikawa
    • 1
  • N. Narukage
    • 1
  • R. Kano
    • 1
  • Y. Katsukawa
    • 1
  • M. Kubo
    • 1
  • S. Ishikawa
    • 2
  • T. Bando
    • 1
  • H. Hara
    • 1
  • Y. Suematsu
    • 1
  • A. Winebarger
    • 3
  • K. Kobayashi
    • 3
  • F. Auchère
    • 4
  • J. Trujillo Bueno
    • 5
  • S. Tsuneta
    • 2
  • T. Shimizu
    • 2
  • T. Sakao
    • 2
  • J. Cirtain
    • 3
  • P. Champey
    • 6
  • A. Asensio Ramos
    • 5
  • J. Štěpán
    • 7
  • L. Belluzzi
    • 8
    • 9
  • R. Manso Sainz
    • 10
  • B. De Pontieu
    • 11
  • K. Ichimoto
    • 12
  • M. Carlsson
    • 13
  • R. Casini
    • 14
  • M. Goto
    • 15
  1. 1.National Astronomical Observatory of JapanNational Institutes of Natural SciencesMitakaJapan
  2. 2.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  3. 3.NASA Marshall Space Flight CenterHuntsvilleUSA
  4. 4.Institut d’Astrophysique SpatialeCNRS/Université Paris-Sud 11OrsayFrance
  5. 5.Instituto de Astrofísica de CanariasLa LagunaSpain
  6. 6.University of Alabama in HuntsvilleHuntsvilleUSA
  7. 7.Astronomical InstituteAcademy of Sciences of the Czech RepublicOndřejovCzech Republic
  8. 8.Istituto Ricerche Solari LocarnoLocarnoSwitzerland
  9. 9.Kiepenheuer-Institut für SonnenphysikFreiburg im BreisgauGermany
  10. 10.Max-Planck-Institut für SonnensystemforschungGöttingenGermany
  11. 11.Lockheed Martin Solar and Astrophysics LaboratoryPalo AltoUSA
  12. 12.Hida ObservatoryKyoto UniversityTakayamaJapan
  13. 13.University of OsloOsloNorway
  14. 14.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA
  15. 15.National Institute for Fusion ScienceNational Institutes of Natural SciencesTokiJapan

Personalised recommendations