Solar Physics

, 292:16

JPEG2000 Image Compression on Solar EUV Images

  • Catherine E. Fischer
  • Daniel Müller
  • Ineke De Moortel
Article

Abstract

For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.

Keywords

Image processing Image compression JPEG2000 

References

  1. Berger, T.E., de Pontieu, B., Fletcher, L., Schrijver, C.J., Tarbell, T.D., Title, A.M.: 1999, What is Moss? Solar Phys. 190, 409. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P., Weber, M.: 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 41. ADSCrossRefGoogle Scholar
  3. Gissot, S., Pylyser, E., Hochedez, J.-F., Devaux, F.-O., Correa, P., Rouvroy, G., Inhester, B., Kennedy, T., Auchère, F.: 2009, Quality measures for an optimized JPEG2000-like EUI compression. In: 3rd Solar Orbiter Workshop, 2009. https://publi2-as.oma.be/record/2907. Google Scholar
  4. Jain, R., Maurya, R.A., Hindman, B.W.: 2015, Fundamental-mode oscillations of two coronal loops within a solar magnetic arcade. Astrophys. J. Lett. 804, L19. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. ADSCrossRefGoogle Scholar
  6. Löptien, B., Birch, A.C., Duvall, T.L., Gizon, L., Schou, J.: 2016, Data compression for local correlation tracking of solar granulation. Astron. Astrophys. 587, A9. DOI. ADS. CrossRefGoogle Scholar
  7. Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII, Astron. Soc. Pacific C.S. 411, 251. ADS. Google Scholar
  8. Müller, D., Fleck, B., Dimitoglou, G., Caplins, B.W., Amadigwe, D.E., Ortiz, J.P.G., Wamsler, B., Alexanderian, A., Hughitt, V.K., Ireland, J.: 2009, JHelioviewer: visualizing large sets of solar images using JPEG 2000. Comput. Sci. Eng. 11(5), 38. CrossRefGoogle Scholar
  9. Nicula, B., Berghmans, D., Hochedez, J.-F.: 2005, Poisson recoding of solar images for enhanced compression. Solar Phys. 228, 253. ADSCrossRefGoogle Scholar
  10. Peters, S.M., Kitaeff, V.V.: 2014, The impact of JPEG2000 lossy compression on the scientific quality of radio astronomy imagery. Astron. Comput. 6, 41. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Skodras, A., Christopoulos, C., Ebrahimi, T.: 2001, The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18, 36. ADSCrossRefMATHGoogle Scholar
  12. Wang, Z., Bovik, A.C.: 2009, Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98. DOI. ADSCrossRefGoogle Scholar
  13. Wang, Z., Simoncelli, E.P., Bovik, A.C.: 2003, Multiscale structural similarity for image quality assessment. In: 37th Asilomar Conf. on Signals, Systems and Computers 2, 1398. DOI. Google Scholar
  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600. ADSCrossRefGoogle Scholar
  15. White, R.S., Verwichte, E.: 2012, Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO. Astron. Astrophys. 537, A49. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Kiepenheuer Institut für SonnenphysikFreiburgGermany
  2. 2.European Space Agency/ESTECNoordwijkThe Netherlands
  3. 3.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK

Personalised recommendations