Solar Physics

, 292:15 | Cite as

An Optical Atmospheric Phenomenon Observed in 1670 over the City of Astrakhan Was Not a Mid-Latitude Aurora

  • I. G. Usoskin
  • G. A. Kovaltsov
  • L. N. Mishina
  • D. D. Sokoloff
  • J. Vaquero


It has recently been claimed (Zolotova and Ponyavin Solar Phys., 291, 2869, 2016; ZP16 henceforth) that a mid-latitude optical phenomenon, which took place over the city of Astrakhan in July 1670, according to Russian chronicles, were a strong aurora borealis. If this were true, it would imply a very strong or even severe geomagnetic storm during the quietest part of the Maunder minimum. However, as we argue in this article, this conclusion is erroneous and caused by a misinterpretation of the chronicle record. As a result of a thorough analysis of the chronicle text, we show that the described phenomenon occurred during the daylight period of the day (“the last morning hour”), in the south (“towards noon”), and its description does not match that of an aurora. The date of the event was also interpreted incorrectly. We conclude that this phenomenon was not a mid-latitude aurora, but an atmospheric phenomenon, the so-called sundog (or parhelion), which is a particular type of solar halo. Accordingly, the claim of a strong mid-latitude aurora during the deep Maunder Minimum is not correct and should be dismissed.


Solar activity Sunspots Solar observations Solar cycle 



IGU and GAK acknowledge support by the Academy of Finland to the ReSoLVE Center of Excellence (project no. 272157). JMV was supported by the Junta de Extremadura (Research Group Grants GR15137) and by the Ministerio de Economía y Competitividad of the Spanish Government (AYA2014-57556-P).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2016_1035_MOESM1_ESM.pdf (634 kb)
(PDF 634 kB)


  1. Beer, J., McCracken, K., von Steiger, R.: 2012, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments, Springer, Berlin. CrossRefGoogle Scholar
  2. Buganov, V.I., Rybakov, B.A. (eds.): 1968, Complete Collection of Russian Chronicles. Chroniclers of the Last Quarter of the XVII Century 31, Nauka, Moscow. Google Scholar
  3. Carrasco, V.M.S., Vaquero, J.M.: 2016, Sunspot observations during the Maunder minimum from the correspondence of John Flamsteed. Solar Phys. 291, 2493.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Carrasco, V.M.S., Álvarez, J.V., Vaquero, J.M.: 2015, Sunspots during the Maunder minimum from machina coelestis by hevelius. Solar Phys. 290, 2719.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(3).
  6. Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Eddy, J.A.: 1983, The Maunder minimum – a reappraisal. Solar Phys. 89, 195. ADS. ADSCrossRefGoogle Scholar
  8. Greenler, R.: 1990, Rainbows, Halos and Glories, Cambridge University Press, Cambridge. Google Scholar
  9. Inceoglu, F., Simoniello, R., Knudsen, V.F., Karoff, C., Olsen, J., Turck-Chiéze, S., Jacobsen, B.H.: 2015, Grand solar minima and maxima deduced from 10Be and 14C: magnetic dynamo configuration and polarity reversal. Astron. Astrophys. 577, A20. ADSCrossRefGoogle Scholar
  10. Kostomarov, N.I.: 1994, Rebelion of Stepan Razin (in Russian), Charli, Moscow. Google Scholar
  11. Lee, E.H., Ahn, Y.S., Yang, H.J., Chen, K.Y.: 2004, The sunspot and auroral activity cycle derived from Korean historical records of the 11th 18th century. Solar Phys. 224, 373.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Letfus, V.: 2000, Relative sunspot numbers in the first half of eighteenth century. Solar Phys. 194, 175. ADS. ADSCrossRefGoogle Scholar
  13. Licht, A., Hulot, G., Gallet, Y., Thébault, E.: 2013, Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Inter. 224, 38.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Ribes, J.C., Nesme-Ribes, E.: 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549. ADSGoogle Scholar
  15. Schperk, F.F.: 1895, Essays on the Astrakhanskyi District. Climate of the City of Astrakhan and Astrakhanskiy District (in Russian), Tip. Imp. Akad. Nauk, St. Petersburg. Google Scholar
  16. Sokoloff, D.: 2004, The Maunder minimum and the solar dynamo. Solar Phys. 224, 145.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilae, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 2012, 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109(16), 5967.  DOI. ADSCrossRefGoogle Scholar
  18. Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: the backbone method. Solar Phys. 291, 2653.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Usoskin, I.G., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thébault, E., Khokhlov, A.: 2014, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10.  DOI. ADSCrossRefGoogle Scholar
  20. Usoskin, I.G., Arlt, R., Asvestari, E., Hawkins, E., Käpylä, M., Kovaltsov, G.A., Krivova, N., Lockwood, M., Mursula, K., O’Reilly, J., Owens, M., Scott, C.J., Sokoloff, D.D., Solanki, S.K., Soon, W., Vaquero, J.M.: 2015, The Maunder minimum (1645 – 1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron. Astrophys. 581, A95.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A., Hulot, G.: 2016, Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxim. Astron. Astrophys. 587, A150.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Vaquero, J.M., Trigo, R.M.: 2014, Revised group sunspot number values for 1640, 1652, and 1741. Solar Phys. 289, 803.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Vaquero, J.M., Gallego, M.C., Usoskin, I.G., Kovaltsov, G.A.: 2011, Revisited sunspot data: a new scenario for the onset of the Maunder minimum. Astrophys. J. Lett. 731, L24.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Vaquero, J.M., Kovaltsov, G.A., Usoskin, I.G., Carrasco, V.M.S., Gallego, M.C.: 2015, Level and length of cyclic solar activity during the Maunder minimum as deduced from the active day statistics. Astron. Astrophys. 577, A71.  DOI. ADSCrossRefGoogle Scholar
  25. Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lefèvre, L., Gallego, M.C., Arlt, R., Aparicio, A.J.P., Richard, J., Howe, R.: 2016, A revised collection of sunspot group numbers. Solar Phys. 291, 3061.  DOI. ADSCrossRefGoogle Scholar
  26. Vázquez, M., Vaquero, J.M., Gallego, M.C., Roca Cortés, T., Pallé, P.L.: 2016, Long-term trends and Gleissberg cycles in aurora borealis records (1600 – 2015). Solar Phys. 291, 613.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Zhang, Z.W.: 1985, Korean auroral records of the period ad 1507-1747 and the SAR arcs. J. Br. Astron. Assoc. 95, 205. ADS. ADSGoogle Scholar
  28. Zolotova, N.V., Ponyavin, D.I.: 2015, The Maunder Minimum is not as grand as it seemed to be. Astrophys. J. 800, 42.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Zolotova, N.V., Ponyavin, D.I.: 2016, How deep was the Maunder minimum? Solar Phys. 291, 2869.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Space Climate Research UnitUniversity of OuluOuluFinland
  2. 2.Sodankylä Geophysical ObservatoryUniversity of OuluOuluFinland
  3. 3.Ioffe Physical-Technical InstituteSt. PetersburgRussia
  4. 4.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia
  5. 5.Moscow State UniversityMoscowRussia
  6. 6.Departamento de FisicaUniversidad de ExtremaduraMéridaSpain
  7. 7.Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS)Universidad de ExtremaduraBadajozSpain

Personalised recommendations