Solar Physics

, 292:3 | Cite as

The 26 December 2001 Solar Eruptive Event Responsible for GLE63. II. Multi-Loop Structure of Microwave Sources in a Major Long-Duration Flare

  • V. Grechnev
  • A. M. Uralov
  • V. I. Kiselev
  • A. A. Kochanov


Our analysis of the observations of the SOL2001-12-26 event, which was related to ground-level enhancement of cosmic-ray intensity GLE63, including microwave spectra and images from the Nobeyama Radioheliograph at 17 and 34 GHz, from the Siberian Solar Radio Telescope at 5.7 GHz, and from the Transition Region and Coronal Explorer in 1600 Å, has led to the following results: A flare ribbon overlapped with the sunspot umbra, which is typical of large particle events. Atypical were i) the long duration of the flare, which lasted more than one hour; ii) the moderate intensity of the microwave burst, which was about \(10^{4}~\mbox{sfu}\); iii) the low peak frequency of the gyrosynchrotron spectrum, which was about 6 GHz; and its insensitivity to the flux increase by more than one order of magnitude. This was accompanied by a nearly constant ratio of the flux emitted by the volume in the high-frequency part of the spectrum to its elevated low-frequency part determined by the area of the source. With the self-similarity of the spectrum, a similarity was observed between the moving microwave sources and the brightest parts of the flare ribbons in 1600 Å images. We compared the 17 GHz and 1600 Å images and confirm that the microwave sources were associated with multiple flare loops, whose footpoints appeared in the ultraviolet as intermittent bright kernels. To understand the properties of the event, we simulated its microwave emission using a system of several homogeneous gyrosynchrotron sources above the ribbons. The scatter between the spectra and the sizes of the individual sources is determined by the inhomogeneity of the magnetic field within the ribbons. The microwave flux is mainly governed by the magnetic flux passing through the ribbons and the sources. The apparent simplicity of the microwave structures is caused by a poorer spatial resolution and dynamic range of the microwave imaging. The results indicate that microwave manifestations of accelerated electrons correspond to the structures observed in thermal emissions, as well-known models predict.


Flares Radio bursts, microwave (mm, cm) 



We thank N.V. Nitta for discussions and the reviewer for useful remarks. We thank the instrument teams managing SSRT, NoRH, and NoRP; TRACE (NASA); SOHO/MDI and LASCO (ESA and NASA), GOES; USAF RSTN Network; NICT (Japan); and the CME Catalog at the CDAW Data Center (NASA and Catholic University of America). In memory of T.A. Treskov, one of the main developers of the SSRT, and N.N. Kardapolova, who managed SSRT observations for many years. This study was supported by the Russian State Contract No. II.16.1.6. A. Kochanov was supported by the Russian Foundation of Basic Research under grants 15-32-20504 mol-a-ved and 15-02-03717. V. Kiselev was supported by the Marie Curie PIRSES-GA-2011-295272 RadioSun project.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2016_1025_MOESM1_ESM.mpg (6.6 mb)
(MPG 6.6 MB)
11207_2016_1025_MOESM2_ESM.mpg (5.3 mb)
(MPG 5.3 MB)


  1. Alissandrakis, C.E.: 1986, Solar Phys. 104, 207.  DOI. ADSCrossRefGoogle Scholar
  2. Alissandrakis, C.E., Preka-Papadema, P.: 1984, Astron. Astrophys. 139, 507. ADSGoogle Scholar
  3. Asai, A., Masuda, S., Yokoyama, T., Shimojo, M., Isobe, H., Kurokawa, H., Shibata, K.: 2002, Astrophys. J. Lett. 578, L91.  DOI. ADSCrossRefGoogle Scholar
  4. Asai, A., Yokoyama, T., Shimojo, M., Masuda, S., Kurokawa, H., Shibata, K.: 2004, Astrophys. J. 611, 557.  DOI. ADSCrossRefGoogle Scholar
  5. Aschwanden, M.J.: 2012, Space Sci. Rev. 173, 3.  DOI. ADSCrossRefGoogle Scholar
  6. Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Annu. Rev. Astron. Astrophys. 36, 131.  DOI. ADSCrossRefGoogle Scholar
  7. Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: 2005, Astrophys. J. 630, 561.  DOI. ADSCrossRefGoogle Scholar
  8. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, Solar Phys. 162, 357.  DOI. ADSCrossRefGoogle Scholar
  9. Cheng, X., Zhang, J., Liu, Y., Ding, M.D.: 2011, Astrophys. J. Lett. 732, L25.  DOI. ADSCrossRefGoogle Scholar
  10. Cliver, E.W.: 2006, Astrophys. J. 639, 1206.  DOI. ADSCrossRefGoogle Scholar
  11. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Solar Phys. 290, 841.  DOI. ADSCrossRefGoogle Scholar
  12. Dulk, G.A.: 1985, Annu. Rev. Astron. Astrophys. 23, 169.  DOI. ADSCrossRefGoogle Scholar
  13. Dulk, G.A., Marsh, K.A.: 1982, Astrophys. J. 259, 350.  DOI. ADSCrossRefGoogle Scholar
  14. Filippov, B., Golub, L., Koutchmy, S.: 2009, Solar Phys. 254, 259.  DOI. ADSCrossRefGoogle Scholar
  15. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Space Sci. Rev. 171, 23.  DOI. ADSCrossRefGoogle Scholar
  16. Grechnev, V.V.: 2003, Solar Phys. 213, 103.  DOI. ADSCrossRefGoogle Scholar
  17. Grechnev, V.V.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symp. 223, 625.  DOI. Google Scholar
  18. Grechnev, V.V., Kochanov, A.A.: 2016, Solar. Phys. 291.  DOI (Article I).
  19. Grechnev, V.V., Nakajima, H.: 2002, Astrophys. J. 566, 539.  DOI. ADSCrossRefGoogle Scholar
  20. Grechnev, V.V., Kundu, M.R., Nindos, A.: 2006, Publ. Astron. Soc. Japan 58, 47.  DOI. ADSCrossRefGoogle Scholar
  21. Grechnev, V.V., Lesovoi, S.V., Smolkov, G.Y., Krissinel, B.B., Zandanov, V.G., Altyntsev, A.T., Kardapolova, N.N., Sergeev, R.Y., Uralov, A.M., Maksimov, V.P., Lubyshev, B.I.: 2003, Solar Phys. 216, 239.  DOI. ADSCrossRefGoogle Scholar
  22. Grechnev, V.V., Kurt, V.G., Chertok, I.M., Uralov, A.M., Nakajima, H., Altyntsev, A.T., Belov, A.V., Yushkov, B.Y., Kuznetsov, S.N., Kashapova, L.K., Meshalkina, N.S., Prestage, N.P.: 2008, Solar Phys. 252, 149.  DOI. ADSCrossRefGoogle Scholar
  23. Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Solar Phys. 273, 433.  DOI. ADSCrossRefGoogle Scholar
  24. Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Meshalkina, N.S., Kochanov, A.A.: 2013a, Publ. Astron. Soc. Japan 65(SP1), S9.  DOI. ADSCrossRefGoogle Scholar
  25. Grechnev, V.V., Meshalkina, N.S., Chertok, I.M., Kiselev, V.I.: 2013b, Publ. Astron. Soc. Japan 65(SP1), S4.  DOI. ADSCrossRefGoogle Scholar
  26. Grechnev, V.V., Uralov, A.M., Chertok, I.M., Slemzin, V.A., Filippov, B.P., Egorov Ya, I., Fainshtein, V.G., Afanasyev, A.N., Prestage, N., Temmer, M.: 2014, Solar Phys. 289, 1279.  DOI. ADSCrossRefGoogle Scholar
  27. Grechnev, V.V., Kiselev, V.I., Meshalkina, N.S., Chertok, I.M.: 2015a, Solar Phys. 290, 2827.  DOI. ADSCrossRefGoogle Scholar
  28. Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015b, Solar Phys. 290, 129.  DOI. ADSCrossRefGoogle Scholar
  29. Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, Solar Phys. 291, 1173.  DOI. ADSCrossRefGoogle Scholar
  30. Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Klein, K.-L., Kochanov, A.A.: 2017, in preparation. Solar Phys. (Article III). Google Scholar
  31. Hanaoka, Y.: 1996, Solar Phys. 165, 275.  DOI. ADSCrossRefGoogle Scholar
  32. Hanaoka, Y.: 1997, Solar Phys. 173, 319.  DOI. ADSCrossRefGoogle Scholar
  33. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., et al.: 1999, Solar Phys. 187, 229.  DOI. ADSCrossRefGoogle Scholar
  34. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., et al.: 2002, Solar Phys. 210, 61.  DOI. ADSCrossRefGoogle Scholar
  35. Ji, H., Wang, H., Liu, C., Dennis, B.R.: 2008, Astrophys. J. 680, 734.  DOI. ADSCrossRefGoogle Scholar
  36. Kahler, S.W.: 1982, J. Geophys. Res. 87, 3439.  DOI. ADSCrossRefGoogle Scholar
  37. Kallenrode, M.-B.: 2003, J. Phys. G, Nucl. Part. Phys. 29, 965.  DOI. ADSCrossRefGoogle Scholar
  38. Koshiishi, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., Takano, T., Hanaoka, Y., Torii, C., Sekiguchi, H., Kawashima, S., et al.: 1994, Publ. Astron. Soc. Japan 46, L33. ADSGoogle Scholar
  39. Kosugi, T., Dennis, B.R., Kai, K.: 1988, Astrophys. J. 324, 1118.  DOI. ADSCrossRefGoogle Scholar
  40. Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai, K., Masuda, S., Nakajima, H., Ogawara, Y., Sawa, M., Shibasaki, K.: 1991, Solar Phys. 136, 17.  DOI. ADSCrossRefGoogle Scholar
  41. Krucker, S., Christe, S., Glesener, L., Ishikawa, S-n., Ramsey, B., Takahashi, T., Watanabe, S., Saito, S., Gubarev, M., Kilaru, K., et al.: 2014, Astrophys. J. Lett. 793, L32.  DOI. ADSCrossRefGoogle Scholar
  42. Kundu, M.R., Nindos, A., Grechnev, V.V.: 2004, Astron. Astrophys. 420, 351.  DOI. ADSCrossRefGoogle Scholar
  43. Kundu, M.R., Grechnev, V.V., White, S.M., Schmahl, E.J., Meshalkina, N.S., Kashapova, L.K.: 2009, Solar Phys. 260, 135.  DOI. ADSCrossRefGoogle Scholar
  44. Kuznetsov, A.A., Nita, G.M., Fleishman, G.D.: 2011, Astrophys. J. 742, 87.  DOI. ADSCrossRefGoogle Scholar
  45. Lee, J.W., Gary, D.E., Zirin, H.: 1994, Solar Phys. 152, 409.  DOI. ADSCrossRefGoogle Scholar
  46. Lee, J., Nita, G.M., Gary, D.E.: 2009, Astrophys. J. 696, 274.  DOI. ADSCrossRefGoogle Scholar
  47. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, Solar Phys. 210, 3.  DOI. ADSCrossRefGoogle Scholar
  48. Liu, C., Lee, J., Gary, D.E., Wang, H.: 2007, Astrophys. J. Lett. 658, L127.  DOI. ADSCrossRefGoogle Scholar
  49. Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, Astrophys. J. 700, 559.  DOI. ADSCrossRefGoogle Scholar
  50. Masuda, S., Kosugi, T., Hudson, H.S.: 2001, Solar Phys. 204, 55.  DOI. ADSCrossRefGoogle Scholar
  51. Melnikov, V.F., Magun, A.: 1998, Solar Phys. 178, 153.  DOI. ADSCrossRefGoogle Scholar
  52. Melnikov, V.F., Gary, D.E., Nita, G.M.: 2008, Solar Phys. 253, 43.  DOI. ADSCrossRefGoogle Scholar
  53. Meshalkina, N.S., Uralov, A.M., Grechnev, V.V., Altyntsev, A.T., Kashapova, L.K.: 2009, Publ. Astron. Soc. Japan 61, 791.  DOI. ADSCrossRefGoogle Scholar
  54. Metcalf, T.R., Alexander, D., Hudson, H.S., Longcope, D.W.: 2003, Astrophys. J. 595, 483.  DOI. ADSCrossRefGoogle Scholar
  55. Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Astron. Astrophys. 499, 893.  DOI. ADSCrossRefGoogle Scholar
  56. Miklenic, C.H., Veronig, A.M., Vršnak, B., Hanslmeier, A.: 2007, Astron. Astrophys. 461, 697.  DOI. ADSCrossRefGoogle Scholar
  57. Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., Kawashima, S.: 1985, Publ. Astron. Soc. Japan 37, 163. ADSGoogle Scholar
  58. Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., Hanaoka, Y., Torii, C., Sekiguchi, H., Bushimata, T., Kawashima, S., et al.: 1994, Proc. IEEE 82, 705.  DOI. ADSCrossRefGoogle Scholar
  59. Neupert, W.M.: 1968, Astrophys. J. Lett. 153, L59.  DOI. ADSCrossRefGoogle Scholar
  60. Nishio, M., Yaji, K., Kosugi, T., Nakajima, H., Sakurai, T.: 1997, Astrophys. J. 489, 976.  DOI. ADSCrossRefGoogle Scholar
  61. Nitta, N.V., Liu, Y., DeRosa, M.L., Nightingale, R.W.: 2012, Space Sci. Rev. 171, 61.  DOI. ADSCrossRefGoogle Scholar
  62. Reznikova, V.E., Melnikov, V.F., Ji, H., Shibasaki, K.: 2010, Astrophys. J. 724, 171.  DOI. ADSCrossRefGoogle Scholar
  63. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., et al.: 1995, Solar Phys. 162, 129.  DOI. ADSCrossRefGoogle Scholar
  64. Smolkov, G.I., Pistolkors, A.A., Treskov, T.A., Krissinel, B.B., Putilov, V.A.: 1986, Astrophys. Space Sci. 119, 1.  DOI. ADSCrossRefGoogle Scholar
  65. Stähli, M., Gary, D.E., Hurford, G.J.: 1989, Solar Phys. 120, 351.  DOI. ADSCrossRefGoogle Scholar
  66. Thalmann, J.K., Su, Y., Temmer, M., Veronig, A.M.: 2015, Astrophys. J. Lett. 801, L23.  DOI. ADSCrossRefGoogle Scholar
  67. Torii, C., Tsukiji, Y., Kobayashi, S., Yoshimi, N., Tanaka, H., Enome, S.: 1979, Proc. Res. Inst. Atmos. 26, 129. Google Scholar
  68. Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Solar Phys. 290, 819.  DOI. ADSCrossRefGoogle Scholar
  69. Tzatzakis, V., Nindos, A., Alissandrakis, C.E.: 2008, Solar Phys. 253, 79.  DOI. ADSCrossRefGoogle Scholar
  70. Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Myshyakov, I.I., Chertok, I.M., Filippov, B.P., Slemzin, V.A.: 2014, Solar Phys. 289, 3747.  DOI. ADSCrossRefGoogle Scholar
  71. Vilmer, N., MacKinnon, A.L., Hurford, G.J.: 2011, Space Sci. Rev. 159, 167.  DOI. ADSCrossRefGoogle Scholar
  72. White, S.M., Krucker, S., Shibasaki, K., Yokoyama, T., Shimojo, M., Kundu, M.R.: 2003, Astrophys. J. Lett. 595, L111.  DOI. ADSCrossRefGoogle Scholar
  73. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, J. Geophys. Res. 109, A07105.  DOI. ADSCrossRefGoogle Scholar
  74. Zimovets, I.V., Kuznetsov, S.A., Struminsky, A.B.: 2013, Astron. Lett. 39, 267.  DOI. ADSCrossRefGoogle Scholar
  75. Zimovets, I., Vilmer, N., Chian, A.C.-L., Sharykin, I., Struminsky, A.: 2012, Astron. Astrophys. 547, A6.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial Physics SB RASIrkutskRussia

Personalised recommendations