Solar Physics

, Volume 291, Issue 11, pp 3251–3267 | Cite as

Motion Magnification in Coronal Seismology

  • Sergey Anfinogentov
  • Valery M. Nakariakov
Waves in the Solar Corona


We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.


Coronal seismology Data processing Motion magnification Solar atmosphere Oscillations Observations Waves Coronal loops 



This work was supported by the European Research Council under the research project No. 321141 SeismoSun. The algorithm is based on the Python code implementing DTℂWT, , developed by Richard Wareham.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2016_1013_MOESM1_ESM.mp4 (2.1 mb)
(MP4 2.1 MB)
11207_2016_1013_MOESM2_ESM.mp4 (11.7 mb)
(MP4 11.7 MB)


  1. Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Anfinogentov, S.A., Nakariakov, V.M., Nisticò, G.: 2015, Decayless low-amplitude kink oscillations: A common phenomenon in the solar corona? Astron. Astrophys. 583, A136.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Anfinogentov, S., Nisticò, G., Nakariakov, V.M.: 2013, Decay-less kink oscillations in coronal loops. Astron. Astrophys. 560, A107.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Auchère, F., Bocchialini, K., Solomon, J., Tison, E.: 2014, Long-period intensity pulsations in the solar corona during activity cycle 23. Astron. Astrophys. 563, A8.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Goossens, M., Andries, J., Aschwanden, M.J.: 2002, Coronal loop oscillations. An interpretation in terms of resonant absorption of quasi-mode kink oscillations. Astron. Astrophys. 394, L39.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Hood, A.W., Ruderman, M., Pascoe, D.J., De Moortel, I., Terradas, J., Wright, A.N.: 2013, Damping of kink waves by mode coupling. I. Analytical treatment. Astron. Astrophys. 551, A39.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Ireland, J., McAteer, R.T.J., Inglis, A.R.: 2015, Coronal Fourier power spectra: Implications for coronal seismology and coronal heating. Astrophys. J. 798, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Kingsbury, N.: 2001, Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10(3), 234.  DOI. MathSciNetCrossRefzbMATHGoogle Scholar
  11. Kolotkov, D.Y., Anfinogentov, S.A., Nakariakov, V.M.: 2016, Empirical mode decomposition analysis of random processes in the solar atmosphere. Astron. Astrophys. 592, A153.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Kolotkov, D.Y., Nakariakov, V.M., Kupriyanova, E.G., Ratcliffe, H., Shibasaki, K.: 2015, Multi-mode quasi-periodic pulsations in a solar flare. Astron. Astrophys. 574, A53.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Liu, C., Torralba, A., Freeman, W.T., Durand, F., Adelson, E.H.: 2005, Motion magnification. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New York, 519.  DOI. CrossRefGoogle Scholar
  16. Martens, P.C.H., Attrill, G.D.R., Davey, A.R., Engell, A., Farid, S., Grigis, P.C., Kasper, J., Korreck, K., Saar, S.H., Savcheva, A., Su, Y., Testa, P., Wills-Davey, M., Bernasconi, P.N., Raouafi, N.-E., Delouille, V.A., Hochedez, J.F., Cirtain, J.W., Deforest, C.E., Angryk, R.A., de Moortel, I., Wiegelmann, T., Georgoulis, M.K., McAteer, R.T.J., Timmons, R.P.: 2012, Computer vision for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 79.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: Implications for coronal heating. Science 285, 862.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Nakariakov, V.M., Pilipenko, V., Heilig, B., Jelínek, P., Karlický, M., Klimushkin, D.Y., Kolotkov, D.Y., Lee, D.-H., Nisticò, G., Van Doorsselaere, T., Verth, G., Zimovets, I.V.: 2016, Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 200, 75. ADS.  DOI. ADSCrossRefGoogle Scholar
  19. Nisticò, G., Anfinogentov, S., Nakariakov, V.M.: 2014, Dynamics of a multi-thermal loop in the solar corona. Astron. Astrophys. 570, A84.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Nisticò, G., Nakariakov, V.M., Verwichte, E.: 2013, Decaying and decayless transverse oscillations of a coronal loop. Astron. Astrophys. 552, A57.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Pascoe, D.J., Hood, A.W., De Moortel, I., Wright, A.N.: 2013, Damping of kink waves by mode coupling. II. Parametric study and seismology. Astron. Astrophys. 551, A40.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Pascoe, D.J., Goddard, C.R., Nisticò, G., Anfinogentov, S., Nakariakov, V.M.: 2016, Damping profile of standing kink oscillations observed by SDO/AIA. Astron. Astrophys. 585, L6.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: 2005, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Simoncelli, E.P., Freeman, W.T.: 1995, The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: ICIP ’95: Proceedings of the 1995 International Conference on Image Processing (Vol. 3), IEEE Comput. Soc., Washington. 0-8186-7310-9. Google Scholar
  25. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: 1992, Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38(2), 587.  DOI. MathSciNetCrossRefGoogle Scholar
  26. Stenborg, G., Marsch, E., Vourlidas, A., Howard, R., Baldwin, K.: 2011, A novel technique to measure intensity fluctuations in EUV images and to detect coronal sound waves nearby active regions. Astron. Astrophys. 526, A58.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Sych, R.A., Nakariakov, V.M.: 2008, The pixelised wavelet filtering method to study waves and oscillations in time sequences of solar atmospheric images. Solar Phys. 248, 395.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Terradas, J., Oliver, R., Ballester, J.L.: 2004, Application of statistical techniques to the analysis of solar coronal oscillations. Astrophys. J. 614, 435.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Thurgood, J.O., Morton, R.J., McLaughlin, J.A.: 2014, First direct measurements of transverse waves in solar polar plumes using SDO/AIA. Astrophys. J. Lett. 790, L2.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Van Doorsselaere, T., Birtill, D.C.C., Evans, G.R.: 2009, Detection of three periodicities in a single oscillating coronal loop. Astron. Astrophys. 508, 1485.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: 2007, Coronal loop seismology using multiple transverse loop oscillation harmonics. Astron. Astrophys. 473, 959.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Verth, G., Erdélyi, R.: 2008, Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations. Astron. Astrophys. 486, 1015.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  33. Verth, G., Van Doorsselaere, T., Erdélyi, R., Goossens, M.: 2007, Spatial magneto-seismology: effect of density stratification on the first harmonic amplitude profile of transversal coronal loop oscillations. Astron. Astrophys. 475, 341.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Verwichte, E., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Characteristics of transverse oscillations in a coronal loop arcade. Solar Phys. 223, 77.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: 2013, Phase-based video motion processing. ACM Trans. Graph. 32(4), 80:1.  DOI. CrossRefzbMATHGoogle Scholar
  36. Wang, T., Ofman, L., Davila, J.M., Su, Y.: 2012, Growing transverse oscillations of a multistranded loop observed by SDO/AIA. Astrophys. J. Lett. 751, L27.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Wareham, R., Forshaw, S., Roberts, T.: 2014, dtcwt: A Python dual tree complex wavelet transform library.  DOI.
  38. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: 2012, Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31(4), 65.  DOI. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centre for Fusion, Space and Astrophysics, Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations