Advertisement

Solar Physics

, Volume 291, Issue 12, pp 3527–3547 | Cite as

Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

  • M. MeftahEmail author
  • D. Bolsée
  • L. Damé
  • A. Hauchecorne
  • N. Pereira
  • A. Irbah
  • S. Bekki
  • G. Cessateur
  • T. Foujols
  • R. Thiéblemont
Article

Abstract

Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.

Keywords

Solar irradiance Solar cycle Instrumentation and data management Instrumental effects 

Notes

Acknowledgements

The SOLAR/SOLSPEC investigation is supported by the Royal Belgian Institute for Space Aeronomy, by the Centre National d’Etudes Spatiales (CNES, France), by the Bundesministerium für Forschung und Technologie (Germany), and by the Centre National de la Recherche Scientifique (CNRS, France). The authors would like to thank the Laboratory for Atmospheric and Space Physics (LASP, United States) for providing the SORCE data and the Max Planck Institute for Solar System Research (Germany) for providing the SATIRE-S data. The authors gratefully acknowledge the anonymous reviewer for carefully reading the manuscript and providing constructive comments that have led to an improved paper.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Brühl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V.I., Giorgetta, M.A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R.S., Struthers, H., Tian, W.: 2008, Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., Atmos. 113, D11306.  DOI. ADSCrossRefGoogle Scholar
  2. BenMoussa, A., Gissot, S., Schühle, U., Del Zanna, G., Auchère, F., Mekaoui, S., Jones, A.R., Walton, D., Eyles, C.J., Thuillier, G., Seaton, D., Dammasch, I.E., Cessateur, G., Meftah, M., Andretta, V., Berghmans, D., Bewsher, D., Bolsée, D., Bradley, L., Brown, D.S., Chamberlin, P.C., Dewitte, S., Didkovsky, L.V., Dominique, M., Eparvier, F.G., Foujols, T., Gillotay, D., Giordanengo, B., Halain, J.P., Hock, R.A., Irbah, A., Jeppesen, C., Judge, D.L., Kretzschmar, M., McMullin, D.R., Nicula, B., Schmutz, W., Ucker, G., Wieman, S., Woodraska, D., Woods, T.N.: 2013, On-orbit degradation of solar instruments. Solar Phys. 288, 389.  DOI. ADSCrossRefGoogle Scholar
  3. Bolsée, D.: 2012, Métrologie de la spectrophotométrie solaire absolue: principes, mise en oeuvre et résultats; instrument solspec à bord de la station spatiale internationale (unpublished doctoral dissertation). Ph.D. thesis, Université libre de Bruxelles, École polytechnique de Bruxelles. Google Scholar
  4. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: 1999, SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 56, 127.  DOI. ADSCrossRefGoogle Scholar
  5. Brasseur, G.P., Solomon, S.: 2005, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer, 3rd edn. Google Scholar
  6. Cebula, R.P., DeLand, M.T., Hilsenrath, E.: 1998, NOAA 11 solar backscattered ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989 – 1994. 1. Observations and long-term calibration. J. Geophys. Res. 103, 16235.  DOI. ADSCrossRefGoogle Scholar
  7. Cebula, R.P., Hilsenrath, E., Guenther, B.: 1989, Calibration of the Shuttle borne solar backscatter ultraviolet spectrometer. In: Palmer, J.M. (ed.) Optical Radiation Measurements II, Proc. SPIE 1109, 205. CrossRefGoogle Scholar
  8. Cessateur, G., Schmutz, W., Wehrli, C., Gröbner, J., Haberreiter, M., Kretzschmar, M., Rozanov, E., Schöll, M., Shapiro, A., Thuillier, G., Egorova, T., Finsterle, W., Fox, N., Hochedez, J.-F., Koller, S., Meftah, M., Meindl, P., Nyeki, S., Pfiffner, D., Roth, H., Rouzé, M., Spescha, M., Tagirov, R., Werner, L., Wyss, J.-U.: 2016, Solar irradiance observations with PREMOS filter radiometers on the PICARD mission: In-flight performance and data release. Astron. Astrophys. 588, A126.  DOI. ADSCrossRefGoogle Scholar
  9. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Woods, T.N.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945.  DOI. ADSCrossRefGoogle Scholar
  10. Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696.  DOI. ADSCrossRefGoogle Scholar
  11. Harder, J.W., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, 7801.  DOI. ADSCrossRefGoogle Scholar
  12. Harder, J., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 141.  DOI. ADSCrossRefGoogle Scholar
  13. Hegglin, M.I., Gettelman, A., Hoor, P., Krichevsky, R., Manney, G.L., Pan, L.L., Son, S.-W., Stiller, G., Tilmes, S., Walker, K.A., Eyring, V., Shepherd, T.G., Waugh, D., Akiyoshi, H., AñEl, J.A., Austin, J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Frith, S., Garny, H., Hardiman, S.C., JöCkel, P., Kinnison, D.E., Lamarque, J.F., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Olivié, D., Pawson, S., Pitari, G., Plummer, D.A., Pyle, J.A., Rozanov, E., Scinocca, J.F., Shibata, K., Smale, D., TeyssèDre, H., Tian, W., Yamashita, Y.: 2010, Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. J. Geophys. Res., Atmos. 115, D00M09.  DOI. ADSCrossRefGoogle Scholar
  14. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, 1706.  DOI. ADSCrossRefGoogle Scholar
  15. Labs, D., Neckel, H.: 1968, The radiation of the solar photosphere from 2000 Å to 100 μm. Z. Astrophys. 69, 1. ADSGoogle Scholar
  16. Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary? J. Climate 25, 2555.  DOI. ADSCrossRefGoogle Scholar
  17. Meftah, M., Hochedez, J.-F., Irbah, A., Hauchecorne, A., Boumier, P., Corbard, T., Turck-Chièze, S., Abbaki, S., Assus, P., Bertran, E., Bourget, P., Buisson, F., Chaigneau, M., Damé, L., Djafer, D., Dufour, C., Etcheto, P., Ferrero, P., Hersé, M., Marcovici, J.-P., Meissonnier, M., Morand, F., Poiet, G., Prado, J.-Y., Renaud, C., Rouanet, N., Rouzé, M., Salabert, D., Vieau, A.-J.: 2014a, Picard SODISM, a space telescope to study the Sun from the middle ultraviolet to the near infrared. Solar Phys. 289, 1043.  DOI. ADSCrossRefGoogle Scholar
  18. Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E., Mekaoui, S.: 2014b, SOVAP/Picard, a spaceborne radiometer to measure the total solar irradiance. Solar Phys. 289, 1885.  DOI. ADSCrossRefGoogle Scholar
  19. Neckel, H., Labs, D.: 1981, Improved data of solar spectral irradiance from 0.33 to 1.25 microns. Solar Phys. 74, 231.  DOI. ADSCrossRefGoogle Scholar
  20. Neckel, H., Labs, D.: 1984, The solar radiation between 3300 and 12 500 Å. Solar Phys. 90, 205.  DOI. ADSCrossRefGoogle Scholar
  21. Oman, L.D., Plummer, D.A., Waugh, D.W., Austin, J., Scinocca, J.F., Douglass, A.R., Salawitch, R.J., Canty, T., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M.P., Cugnet, D., Dhomse, S., Eyring, V., Frith, S., Hardiman, S.C., Kinnison, D.E., Lamarque, J.-F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Nielsen, J.E., Olivié, D., Pitari, G., Pyle, J., Rozanov, E., Shepherd, T.G., Shibata, K., Stolarski, R.S., TeyssèDre, H., Tian, W., Yamashita, Y., Ziemke, J.R.: 2010, Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. J. Geophys. Res., Atmos. 115, D24306.  DOI. ADSCrossRefGoogle Scholar
  22. Pagaran, J., Weber, M., Burrows, J.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884.  DOI. ADSCrossRefGoogle Scholar
  23. Pagaran, J., Harder, J.W., Weber, M., Floyd, L.E., Burrows, J.P.: 2011, Intercomparison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67.  DOI. ADSCrossRefGoogle Scholar
  24. Schmutz, W., Fehlmann, A., Finsterle, W., Kopp, G., Thuillier, G.: 2013, Total solar irradiance measurements with PREMOS/PICARD. In: AIP Conf. Proc., Am. Inst. Phys. Conf. Ser. 1531, 624.  DOI. Google Scholar
  25. Shapiro, A.V., Rozanov, E.V., Shapiro, A.I., Egorova, T.A., Harder, J., Weber, M., Smith, A.K., Schmutz, W., Peter, T.: 2013, The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004 – 2009. J. Geophys. Res., Atmos. 118, 3781.  DOI. ADSCrossRefGoogle Scholar
  26. Strahan, S.E., Douglass, A.R., Stolarski, R.S., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M.P., Cugnet, D., Dhomse, S., Frith, S.M., Gettelman, A., Hardiman, S.C., Kinnison, D.E., Lamarque, J.-F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Olivié, D., Pawson, S., Pitari, G., Plummer, D.A., Pyle, J.A., Scinocca, J.F., Shepherd, T.G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., Yamashita, Y.: 2011, Using transport diagnostics to understand chemistry climate model ozone simulations. J. Geophys. Res., Atmos. 116, D17302.  DOI. ADSCrossRefGoogle Scholar
  27. Sukhodolov, T., Rozanov, E., Ball, W.T., Bais, A., Tourpali, K., Shapiro, A.I., Telford, P., Smyshlyaev, S., Fomin, B., Sander, R., Bossay, S., Bekki, S., Marchand, M., Chipperfield, M.P., Dhomse, S., Haigh, J.D., Peter, T., Schmutz, W.: 2016, Evaluation of simulated photolysis rates and their response to solar irradiance variability. J. Geophys. Res., Atmos. 121(10), 6066. 2016.  DOI. ADSCrossRefGoogle Scholar
  28. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca Missions. Solar Phys. 214, 1.  DOI. ADSCrossRefGoogle Scholar
  29. Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, SOLAR/SOLSPEC: Scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Solar Phys. 257, 185.  DOI. ADSCrossRefGoogle Scholar
  30. von Hobe, M., Bekki, S., Borrmann, S., Cairo, F., D’Amato, F., Di Donfrancesco, G., Dörnbrack, A., Ebersoldt, A., Ebert, M., Emde, C., Engel, I., Ern, M., Frey, W., Genco, S., Griessbach, S., Grooß, J.-U., Gulde, T., Günther, G., Hösen, E., Hoffmann, L., Homonnai, V., Hoyle, C.R., Isaksen, I.S.A., Jackson, D.R., Jánosi, I.M., Jones, R.L., Kandler, K., Kalicinsky, C., Keil, A., Khaykin, S.M., Khosrawi, F., Kivi, R., Kuttippurath, J., Laube, J.C., Lefèvre, F., Lehmann, R., Ludmann, S., Luo, B.P., Marchand, M., Meyer, J., Mitev, V., Molleker, S., Müller, R., Oelhaf, H., Olschewski, F., Orsolini, Y., Peter, T., Pfeilsticker, K., Piesch, C., Pitts, M.C., Poole, L.R., Pope, F.D., Ravegnani, F., Rex, M., Riese, M., Röckmann, T., Rognerud, B., Roiger, A., Rolf, C., Santee, M.L., Scheibe, M., Schiller, C., Schlager, H., Siciliani de Cumis, M., Sitnikov, N., Søvde, O.A., Spang, R., Spelten, N., Stordal, F., Sumińska-Ebersoldt, O., Ulanovski, A., Ungermann, J., Viciani, S., Volk, C.M., vom Scheidt, M., von der Gathen, P., Walker, K., Wegner, T., Weigel, R., Weinbruch, S., Wetzel, G., Wienhold, F.G., Wohltmann, I., Woiwode, W., Young, I.A.K., Yushkov, V., Zobrist, B., Stroh, F.: 2013, Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. Atmos. Chem. Phys. 13, 9233.  DOI. ADSCrossRefGoogle Scholar
  31. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys. Res. Lett. 36, L01101.  DOI. ADSCrossRefGoogle Scholar
  32. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Meftah
    • 1
    Email author
  • D. Bolsée
    • 2
  • L. Damé
    • 1
  • A. Hauchecorne
    • 1
  • N. Pereira
    • 2
  • A. Irbah
    • 1
  • S. Bekki
    • 1
  • G. Cessateur
    • 2
  • T. Foujols
    • 1
  • R. Thiéblemont
    • 1
  1. 1.LATMOS-IPSLUniversité Paris Saclay, Université Paris VI – Pierre et Marie Curie, CNRS/INSUGuyancourtFrance
  2. 2.Belgian Institute for Space Aeronomy (BIRA-IASB)BrusselsBelgium

Personalised recommendations