Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Variation in the Width of Transition Region Network Boundaries

  • 140 Accesses

  • 2 Citations


The transition region network seen in solar extreme ultraviolet (EUV) lines is the extension of the chromospheric network. The network appears as an irregular web-like pattern over the solar surface outside active regions. The average width of transition region network boundaries is obtained from the two-dimensional autocorrelation function of SOlar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) synoptic images of the Sun in two emission lines, He i 586 Å and O v 630 Å during 1996 – 2012. The width of the network boundaries is found to be roughly correlated with the solar cycle variation with a lag of about ten months. A comparison of the widths in the two emission lines shows that they are larger for the He i line. The SOHO/CDS data also show large asymmetry in boundary widths in the horizontal (x) and vertical (y) image directions, which is shown to be caused by image distortions that are due to instrumental effects. Since the network boundary widths are related to the magnetic flux concentration along the boundaries, the results are expected to have implications on the flux transport on the solar surface, solar cycle, and the mass and energy budget of network loops and jets.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Brooks, D.H., Bewsher, D.: 2006, On deriving plasma velocity information from CDS/NIS observations: Application to the dynamics of blinkers. Solar Phys. 234, 257. DOI .

  2. Bromage, B.J.J., Alexander, D., Breen, A., Clegg, J.R., Del Zanna, G., DeForest, C., et al.: 2000, Structure of a large low-latitude coronal hole. Solar Phys. 193, 181. DOI .

  3. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO Mission. Solar Phys. 162, 291. DOI .

  4. Dowdy, J.F. Jr., Rabin, D., Moore, R.L.: 1986, On the magnetic structure of the quiet transition region. Solar Phys. 105, 35. DOI .

  5. Gabriel, A.H.: 1976, A magnetic model of the solar transition region. Phil. Trans. Roy. Soc. London Ser. A 281, 339. DOI .

  6. Gallagher, P.T., Phillips, K.J.H., Harra-Murnion, L.K., Keenan, F.P.: 1998, Properties of the quiet Sun EUV network. Astron. Astrophys. 335, 733.

  7. Gontikakis, C., Peter, H., Dara, H.C.: 2003, Sizes of quiet Sun transition region structures. Astron. Astrophys. 408, 743. DOI .

  8. Hansteen, V., De Pontieu, B., Carlsson, M., Lemen, J., Title, A., Boerner, P., et al.: 2014, The unresolved fine structure resolved: IRIS observations of the solar transition region. Science 346, 1255757. DOI .

  9. Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., et al.: 1995, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Solar Phys. 162, 233. DOI .

  10. Haugan, S.V.H.: 1999, Anomalous line shifts from local intensity gradients on the SOHO/CDS NIS detector. Solar Phys. 185, 275. DOI .

  11. Jordan, C., Macpherson, K.P., Smith, G.R.: 2001, The anomalous intensities of helium lines in a coronal hole. Mon. Not. Roy. Astron. Soc. 328, 1098. DOI .

  12. McIntosh, S.W., Leamon, R.J., Hock, R.A., Rast, M.P., Ulrich, R.K.: 2011, Observing evolution in the supergranular network length scale during periods of low solar activity. Astrophys. J. Lett. 730, 3. DOI .

  13. Meunier, N., Roudier, T., Tkaczuk, R.: 2007, Are supergranule sizes anti-correlated with magnetic activity? Astron. Astrophys. 466, 1123. DOI .

  14. Muenzer, H., Schroeter, E.H., Woehl, H., Hanslmeier, A.: 1989, Pole-equator-difference of the size of the chromospheric CA II-K-network in quiet and active solar region. Astron. Astrophys. 213, 431.

  15. Patsourakos, S., Vial, J.-C., Gabriel, A.H., Bellamine, N.: 1999, Transition-region network boundaries in the quiet Sun: Width variation with temperature as observed with CDS on SOHO. Astrophys. J. 522, 540. DOI .

  16. Raju, K.P.: 2010, Intensity distribution and contrast of the solar EUV network. Solar Phys. 262, 61. DOI .

  17. Raju, K.P., Srikanth, R., Singh, J.: 1998, The dependence of chromospheric Ca ii K network cell sizes on solar latitude. Solar Phys. 180, 47. DOI .

  18. Raju, K.P., Singh, J.: 2002, Dependence of supergranular length-scales on network magnetic fields. Solar Phys. 207, 11. DOI .

  19. Ravindra, B., Venkatakrishnan, P.: 2003, Structure and evolution of the transition region network observed in He ii \({\lambda}304\). Solar Phys. 215, 239. DOI .

  20. Reeves, E.M.: 1976, The EUV chromospheric network in the quiet Sun. Solar Phys. 46, 53. DOI .

  21. Reeves, E.M., Foukal, P.V., Huber, M.C.E., Noyes, R.W., Schmahl, E.J., Timothy, J.G., Vernazza, J.E., Withbroe, G.L.: 1974, Observations of the chromospheric network: initial results from the Apollo Telescope Mount. Astrophys. J. Lett. 188, 27. DOI .

  22. Singh, J., Bappu, M.K.V.: 1981, A dependence on solar cycle of the size of the \(\mbox{Ca}^{+}\) network. Solar Phys. 71, 161. DOI .

  23. Singh, J., Nagabhushana, B.S., Babu, G.S.D., Uddin, W.: 1994, Study of calcium-K network evolution from Antarctica. Solar Phys. 153, 157. DOI .

  24. Simon, G.W., Leighton, R.B.: 1964, Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120. DOI .

  25. Sýkora, J.: 1970, Time and shape changes of the supergranular network. Solar Phys. 13, 292. DOI .

  26. Tian, H., Marsch, E., Tu, C.-Y., Xia, L.-D., He, J.-S.: 2008, Sizes of transition-region structures in coronal holes and in the quiet Sun. Astron. Astrophys. 482, 267. DOI .

  27. Tian, H., DeLuca, E.E., Cranmer, S.R., De Pontieu, B., Peter, H., Martínez-Sykora, J., et al.: 2014, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346, 1255711. DOI .

  28. Wang, H., Tang, F., Zirin, H., Wang, J.: 1996, The velocities of intranetwork and network magnetic fields. Solar Phys. 165, 223. DOI .

Download references


Data are provided courtesy of SOHO/EIT and CDS consortia. SOHO is a project of international cooperation between ESA and NASA. This work was funded by the Department of Science and Technology, Government of India.

Author information

Correspondence to K. P. Raju.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raju, K.P. Variation in the Width of Transition Region Network Boundaries. Sol Phys 291, 3519–3526 (2016). https://doi.org/10.1007/s11207-016-0991-1

Download citation


  • Supergranulation
  • Transition region
  • Spectrum, ultraviolet
  • Solar cycle, observations