Solar Physics

, Volume 291, Issue 8, pp 2407–2418 | Cite as

Diagnosing the Source Region of a Solar Burst on 26 September 2011 by Using Microwave Type-III Pairs

  • B. L. Tan
  • M. Karlický
  • H. Mészárosová
  • L. Kashapova
  • J. Huang
  • Y. Yan
  • E. P. Kontar
Article

Abstract

We report a peculiar and interesting train of microwave Type-III pair bursts in the impulsive rising phase of a solar flare on 26 September 2011. The observations include radio spectrometers at frequencies of 0.80 – 2.00 GHz from the Ondřejov radiospectrograph in the Czech Republic (ORSC), hard X-ray from the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and Gamma-Ray Burst Monitor onboard the Fermi Space Telescope (Fermi/GRB), EUV images from the Sun Watcher using APS detectors and image Processing instrument onboard the Project for Onboard Autonomy 2 (SWAP/PROBA2), and magnetograms from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory (SDO/HMI). By using a recently developed method (Tan et al., Res. Astron. Astrophys.16, 82, 2016a), we diagnosed the plasma density, temperature, plasma-\(\beta\), magnetic field near the source region, the energy of energetic electrons, and the distance between the acceleration region and the emission start sites of Type-III bursts. From the diagnostics, we find that i) The plasma density, temperature, magnetic field, and the distance between the acceleration region and the emission start sites have almost no obvious variations during the period of Type-III pair trains, while the energy of electrons has an obvious peak value that is consistent with the hard X-ray emission. ii) The plasma-\(\beta\) is much higher than unity, showing a highly dynamic process near the emission start site of Type-III bursts. iii) Although the reversed-slope Type-III branches drift more slowly by one order of magnitude than that of the normal Type-IIIs, the related descending and ascending electrons still could have energy of the same order of magnitude. These facts indicate that both the ascending and descending electrons are possibly accelerated by a similar mechanism and in a small source region. These diagnostics can help us to understand the physics in the source region of solar bursts.

Keywords

Sun: microwave emission Sun: magnetic reconnection Sun: flares 

References

  1. Altyntsev, A.T., Grechnev, V.V., Meshalkna, N.S.: 2007, Microwave type III-like bursts as possible signatures of magnetic reconnection. Solar Phys. 242, 111. ADS. DOI. ADSCrossRefGoogle Scholar
  2. Aschwanden, M.J., Benz, A.O.: 1995, Chromospheric evaporation and decimetric radio emission in solar flares. Astrophys. J. 438, 997. ADS. DOI. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J., Benz, A.O.: 1997, Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophys. J. 480, 825. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J., Benz, A.O., Schwartz, R.A.: 1993, The timing of electron beam signatures in hard X-ray and radio: solar flare observations by BATSE/compton gamma-ray observatory and PHOENIX. Astrophys. J. 417, 790. ADS. DOI. ADSCrossRefGoogle Scholar
  5. Atwood, W.B., Ackermann, M., Atwood, W.B., Axelsson, M., Baldini, L., Ballet, J., et al.: 2009, Pulsed gamma rays from the millisecond pulsar J0030+0451 with the Fermi large area telescope. Astrophys. J. 697, 1071. ADS. DOI. ADSCrossRefGoogle Scholar
  6. Benz, A.O., Barrow, C.H., Dennis, B.R., Pick, M., Raoult, A., Simnett, G.: 1983, X-ray and radio emission in the early stages of solar flares. Solar Phys. 83, 267. ADS. DOI. ADSCrossRefGoogle Scholar
  7. Benz, A.O., Magun, A., Stehling, W., Su, H.: 1992, Electron beams in the low corona. Solar Phys. 141, 335. ADS. DOI. ADSCrossRefGoogle Scholar
  8. Berghmans, D., Hochedez, J.F., Defise, J.M., Lecat, J.H., Nicula, B., Slemzin, V., et al.: 2006, SWAP onboard PROBA 2, a new EUV imager for solar monitoring. Adv. Space Res. 38, 1807. ADS. DOI. ADSCrossRefGoogle Scholar
  9. Drake, J.F., Opher, M., Chamoun, J.N.: 2010, A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963. ADS. DOI. ADSCrossRefGoogle Scholar
  10. Dulk, G.A.: 1985, Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. ADS. DOI. ADSCrossRefGoogle Scholar
  11. Huang, G.L., Qin, Z.H., Yan, G., Fu, Q.J., Liu, Y.Y.: 1998, The energetic spectrum of non-thermal electrons in an acceleration region calculated from a solar microwave type III burst with both positive and negative frequency drifts. Astrophys. Space Sci. 259, 317. ADS. DOI. ADSCrossRefGoogle Scholar
  12. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., et al.: 2002, The RHESSI imaging concept. Sol. Phys. 210, 61. ADS. DOI. ADSCrossRefGoogle Scholar
  13. Jiřička, K., Karlický, M., Kepka, O., Tlamicha, A.: 1993, Fast drift burst observations with the new Ondrejov radiospectrograph. Solar Phys. 147, 203. ADS. DOI. ADSCrossRefGoogle Scholar
  14. Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715. ADSGoogle Scholar
  15. Li, B., Cairns, I.H., Yan, Y.H., Robinson, P.A.: 2011, Decimetric type III bursts: generation and propagation. Astrophys. J. Lett. 738, L9. ADS. DOI. ADSCrossRefGoogle Scholar
  16. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. ADS. DOI. ADSCrossRefGoogle Scholar
  17. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., et al.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. ADS. DOI. ADSCrossRefGoogle Scholar
  18. Meshalkina, N.S., Altyntsev, A.T., Sych, R.A., Chernov, G.P., Yan, Y.H.: 2004, On the wave mode of subsecond pulses in the cm-range. Solar Phys. 221, 85. ADS. DOI. ADSCrossRefGoogle Scholar
  19. Mészárosová, H., Karlický, M., Sawant, H.S., Fernandes, F.C.R., Cecatto, J.R., de Andrade, M.C.: 2008, Solar decimetric type III bursts in semi-closed magnetic field structures. Astron. Astrophys. 484, 529. ADS. DOI. ADSCrossRefGoogle Scholar
  20. Ning, Z.J., Fu, Q.J., Lu, Q.K.: 2000, Type III burst pair. Solar Phys. 194, 137. ADS. DOI. ADSCrossRefGoogle Scholar
  21. Reid, H.A.S., Vilmer, N., Kontar, E.P.: 2011, Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations. Astron. Astrophys. 529, A66. ADS. DOI. ADSCrossRefGoogle Scholar
  22. Robinson, P.A., Benz, A.O.: 2000, Bidirectional type III solar radio bursts. Solar Phys. 194, 345. ADS. DOI. ADSCrossRefGoogle Scholar
  23. Sakai, J.I., Kitamoto, T., Saito, S.: 2005, Simulation of solar type III radio bursts from a magnetic reconnection region. Astrophys. J. 622, 157. ADS. DOI. ADSCrossRefGoogle Scholar
  24. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. ADS. DOI. ADSCrossRefGoogle Scholar
  25. Schoeffler, K.M., Drake, J.F., Swisdak, M.: 2011, The effects of plasma beta and anisotropy instabilities on the dynamics of reconnecting magnetic fields in the heliosheath. Astrophys. J. 743, 70. ADS. DOI. ADSCrossRefGoogle Scholar
  26. Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D.: 2002, RHESSI data analysis software: rationale and methods. Solar Phys. 210, 165. ADS. DOI. ADSCrossRefGoogle Scholar
  27. Stahli, M., Benz, A.O.: 1987, Microwave emission of solar electron beams. Astron. Astrophys. 175, 271. ADSGoogle Scholar
  28. Tan, B.L., Karlický, M., Mészárosová, H., Huang, G.L.: 2016a, Diagnosing physical conditions near the flare energy-release sites from observations of solar microwave type III bursts. Res. Astron. Astrophys. 16, 82. ADS. DOI. CrossRefGoogle Scholar
  29. Tan, B.L., Mészárosová, H., Karlický, M., Huang, G.L., Tan, C.M.: 2016b, Microwave type III pair bursts in solar flares. Astrophys. J. 819, 42. ADS. DOI. ADSCrossRefGoogle Scholar
  30. Yan, Y., Zhang, J., Wang, W., Liu, F., Chen, Z., Ji, G.: 2009, The Chinese spectral radioheliograph—CSRH. Earth Moon Planets 104, 97. ADS. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Solar Activity, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  2. 2.School of Astronomy and Space SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Astronomical Institute of the Academy of Sciences of the Czech RepublicOndřejovCzech Republic
  4. 4.Institute of Solar-Terrestrial SB RASIrkutskRussia
  5. 5.School of Physics & AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations