Solar Physics

, Volume 291, Issue 11, pp 3385–3426 | Cite as

Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

  • S. A. Kuznetsov
  • I. V. Zimovets
  • A. S. Morgachev
  • A. B. Struminsky
Waves in the Solar Corona

Abstract

We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 – 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks \(P \approx8\,\mbox{--}\,270~\mbox{s}\) are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares (\(55~\%\)) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares (\(45~\%\)) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 (\(88~\%\)) group 1 flares and 11 (\(85~\%\)) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the flares we studied are eruptive events. This gives a strong indication that eruptive processes play an important role in the generation of HXR pulsations in flares. We suggest that an erupting flux rope can act as a trigger of the flare energy release. Its successive interaction with different loops of a parent active region can lead to apparent motion of HXR sources and to a series of HXR pulsations. However, the exact mechanism responsible for generating the pulsations remains unclear and requires a more detailed investigation.

Keywords

Flares, dynamics Flares, impulsive phase Flares, relation to magnetic field X-Ray bursts, hard 

References

  1. Artemyev, A., Zimovets, I.: 2012, Stability of current sheets in the solar corona. Solar Phys. 277, 283. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Aschwanden, M.J.: 1987, Theory of radio pulsations in coronal loops. Solar Phys. 111, 113. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J.: 2002, Particle acceleration and kinematics in solar flares – A synthesis of recent observations and theoretical concepts (Invited Review). Space Sci. Rev. 101, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J., Schwartz, R.A., Alt, D.M.: 1995, Electron time-of-flight differences in solar flares. Astrophys. J. 447, 923. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Aschwanden, M.J., Kliem, B., Schwarz, U., Kurths, J., Dennis, B.R., Schwartz, R.A.: 1998, Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505, 941. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Aulanier, G., Pariat, E., Démoulin, P., DeVore, C.R.: 2006, Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: 2005, The motions of the hard X-ray sources in solar flares: Images and statistics. Astrophys. J. 630, 561. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Brown, J.C., Hoyng, P.: 1975, Betatron acceleration in a large solar hard X-ray burst. Astrophys. J. 200, 734. DOI. ADS. ADSCrossRefGoogle Scholar
  9. de Jager, C.: 1979, On the seats of elementary flare bursts. Solar Phys. 64, 135. DOI. ADS. ADSCrossRefGoogle Scholar
  10. de Jager, C., de Jonge, G.: 1978, Properties of elementary flare bursts. Solar Phys. 58, 127. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dennis, B.R.: 1988, Solar flare hard X-ray observations. Solar Phys. 118, 49. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  12. Dolla, L., Marqué, C., Seaton, D.B., Van Doorsselaere, T., Dominique, M., Berghmans, D., Cabanas, C., De Groof, A., Schmutz, W., Verdini, A., West, M.J., Zender, J., Zhukov, A.N.: 2012, Time delays in quasi-periodic pulsations observed during the X2.2 solar flare on 2011 February 15. Astrophys. J. Lett. 749, L16. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Dudík, J., Janvier, M., Aulanier, G., Del Zanna, G., Karlický, M., Mason, H.E., Schmieder, B.: 2014, Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA. Astrophys. J. 784, 144. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Emslie, A.G.: 1981, An interacting loop model for solar flare bursts. Astrophys. Lett. 22, 171. ADS. ADSGoogle Scholar
  15. Fletcher, L., Hudson, H.S.: 2002, Spectral and spatial variations of flare hard X-ray footpoints. Solar Phys. 210, 307. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Foullon, C., Verwichte, E., Nakariakov, V.M., Fletcher, L.: 2005, X-ray quasi-periodic pulsations in solar flares as magnetohydrodynamic oscillations. Astron. Astrophys. 440, L59. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Gan, W.Q., Li, Y.P., Miroshnichenko, L.I.: 2008, On the motions of RHESSI flare footpoints. Adv. Space Res. 41, 908. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Goddard, C.R., Nisticò, G., Nakariakov, V.M., Zimovets, I.V.: 2016, A statistical study of decaying kink oscillations detected using SDO/AIA. Astron. Astrophys. 585, A137. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Grigis, P.C., Benz, A.O.: 2005, The evolution of reconnection along an arcade of magnetic loops. Astrophys. J. Lett. 625, L143. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Gruber, D., Lachowicz, P., Bissaldi, E., Briggs, M.S., Connaughton, V., Greiner, J., van der Horst, A.J., Kanbach, G., Rau, A., Bhat, P.N., Diehl, R., von Kienlin, A., Kippen, R.M., Meegan, C.A., Paciesas, W.S., Preece, R.D., Wilson-Hodge, C.: 2011, Quasi-periodic pulsations in solar flares: New clues from the Fermi gamma-ray burst monitor. Astron. Astrophys. 533, A61. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Hood, A.W., Cargill, P.J., Browning, P.K., Tam, K.V.: 2016, An MHD avalanche in a multi-threaded coronal loop. Astrophys. J. 817, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Inglis, A.R., Dennis, B.R.: 2012, The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares. Astrophys. J. 748, 139. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Inglis, A.R., Gilbert, H.R.: 2013, Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare. Astrophys. J. 777, 30. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Inglis, A.R., Ireland, J., Dominique, M.: 2015, Quasi-periodic pulsations in solar and stellar flares: Re-evaluating their nature in the context of power-law flare Fourier spectra. Astrophys. J. 798, 108. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Jakimiec, J., Tomczak, M.: 2013, Quasi-periodic variations in the hard X-ray emission of a large arcade flare. Solar Phys. 286, 427. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Jakimiec, J., Tomczak, M.: 2014, Investigation of the X-ray emission of the large arcade flare of 2 March 1993. Solar Phys. 289, 2073 DOI. ADS. ADSCrossRefGoogle Scholar
  28. Janvier, M., Aulanier, G., Pariat, E., Démoulin, P.: 2013, The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Ji, H., Huang, G., Wang, H., Zhou, T., Li, Y., Zhang, Y., Song, M.: 2006, Converging motion of H\(\alpha\) conjugate kernels: The signature of fast relaxation of a sheared magnetic field. Astrophys. J. Lett. 636, L173. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715. ADS. ADSGoogle Scholar
  31. Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai, K., Masuda, S., Nakajima, H., Ogawara, Y., Sawa, M., Shibasaki, K.: 1991, The Hard X-ray Telescope (HXT) for the SOLAR-A mission. Solar Phys. 136, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Krucker, S., Hurford, G.J., Lin, R.P.: 2003, Hard X-ray source motions in the 2002 July 23 gamma-ray flare. Astrophys. J. Lett. 595, L103. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: 2010, Types of microwave quasi-periodic pulsations in single flaring loops. Solar Phys. 267, 329. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Li, Y.P., Gan, W.Q.: 2008, Observational studies of the X-ray quasi-periodic oscillations of a solar flare. Solar Phys. 247, 77. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Li, D., Ning, Z.J., Zhang, Q.M.: 2015, Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Li, T., Zhang, J.: 2015, Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the solar dynamics observatory and interface region imaging spectrograph. Astrophys. J. Lett. 804, L8. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Liu, R., Alexander, D., Gilbert, H.R.: 2009, Asymmetric eruptive filaments. Astrophys. J. 691, 1079. DOI. ADS. ADSCrossRefGoogle Scholar
  39. McAteer, R.T.J., Young, C.A., Ireland, J., Gallagher, P.T.: 2007, The bursty nature of solar flare X-ray emission. Astrophys. J. 662, 691. DOI. ADS. ADSCrossRefGoogle Scholar
  40. McLaughlin, J.A., Thurgood, J.O., MacTaggart, D.: 2012, On the periodicity of oscillatory reconnection. Astron. Astrophys. 548, A98. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Living Rev. Solar Phys. 2. DOI. ADS.
  43. Nakariakov, V.M., Zimovets, I.V.: 2011, Slow magnetoacoustic waves in two-ribbon flares. Astrophys. J. Lett. 730, L27. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Nakariakov, V.M., Foullon, C., Verwichte, E., Young, N.P.: 2006, Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop. Astron. Astrophys. 452, 343. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Nakariakov, V.M., Inglis, A.R., Zimovets, I.V., Foullon, C., Verwichte, E., Sych, R., Myagkova, I.N.: 2010, Oscillatory processes in solar flares. Plasma Phys. Control. Fusion 52(12), 124009. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Nakariakov, V.M., Pilipenko, V., Heilig, B., Jelinek, P., Karlicky, M., Klimushkin, D.Y., Kolotkov, D.Y., Lee, D.-H., Nistico, G., Van Doorsselaere, T., Verth, G., Zimovets, I.V.: 2016, Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 1. DOI.
  47. Nordlund, Å., Stein, R.F., Asplund, M.: 2009, Solar surface convection. Living Rev. Solar Phys. 6. DOI. ADS.
  48. Ofman, L., Sui, L.: 2006, Oscillations of hard X-ray flare emission observed by RHESSI: Effects of super-Alfvénic beams? Astrophys. J. Lett. 644, L149. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Priest, E.R., Démoulin, P.: 1995, Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping. J. Geophys. Res. 100, 23443. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Sakao, T., Kosugi, T., Masuda, S.: 1998, Energy release and particle acceleration in solar flares with respect to flaring magnetic loops. In: Watanabe, T., Kosugi, T. (eds.) Observational Plasma Astrophysics: Five Years of YOHKOH and Beyond, Astrophysics and Space Science Library 229, 273. DOI. ADS. CrossRefGoogle Scholar
  52. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Schmieder, B., Démoulin, P., Aulanier, G.: 2013, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51, 1967. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Schrijver, C.J.: 2009, Driving major solar flares and eruptions: A review. Adv. Space Res. 43, 739. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8. DOI. ADS.
  57. Simões, P.J.A., Hudson, H.S., Fletcher, L.: 2015, Soft X-ray pulsations in solar flares. Solar Phys. 290, 3625. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Simões, P.J.A., Fletcher, L., Hudson, H.S., Russell, A.J.B.: 2013, Implosion of coronal loops during the impulsive phase of a solar flare. Astrophys. J. 777, 152. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Somov, B.V.: 2007, Plasma Astrophysics, Part II: Reconnection and Flares. ADS. CrossRefMATHGoogle Scholar
  60. Sych, R., Nakariakov, V.M., Karlicky, M., Anfinogentov, S.: 2009, Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Tajima, T., Sakai, J., Nakajima, H., Kosugi, T., Brunel, F., Kundu, M.R.: 1987, Current loop coalescence model of solar flares. Astrophys. J. 321, 1031. DOI. ADS. ADSCrossRefGoogle Scholar
  62. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  63. van Beek, H.F., de Feiter, L.D., de Jager, C.: 1974a, Hard X-ray observations of elementary flare bursts, and their interpretation. In: Rycroft, M.J., Reasenberg, R.D. (eds.) Space Research XIV, 447. ADS. Google Scholar
  64. van Beek, H.F., de Feiter, L.D., de Jager, C.: 1974b, Time profiles and photon spectra of solar hard X-rays. In: Page, D.E. (ed.) Correlated Interplanetary and Magnetospheric Observations, Astrophysics and Space Science Library 42, 533. DOI. ADS. CrossRefGoogle Scholar
  65. Vaughan, S.: 2005, A simple test for periodic signals in red noise. Astron. Astrophys. 431, 391. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Veronig, A.M., Brown, J.C.: 2004, A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, L117. DOI. ADS. ADSCrossRefGoogle Scholar
  67. White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Yang, Y.-H., Cheng, C.Z., Krucker, S., Lin, R.P., Ip, W.H.: 2009, A statistical study of hard X-ray footpoint motions in large solar flares. Astrophys. J. 693, 132. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Zaitsev, V.V., Stepanov, A.V.: 1982, On the origin of the hard X-ray pulsations during solar flares. Sov. Astron. Lett. 8, 132. ADS. ADSGoogle Scholar
  70. Zaitsev, V.V., Stepanov, A.V.: 2008, Reviews of topical problems: Coronal magnetic loops. Phys. Usp. 51, 1123. DOI. ADS. ADSCrossRefGoogle Scholar
  71. Zimovets, I.V., Kuznetsov, S.A., Struminsky, A.B.: 2013, Fine structure of the sources of quasi-periodic pulsations in “single-loop” solar flares. Astron. Lett. 39, 267. DOI. ADS. ADSCrossRefGoogle Scholar
  72. Zimovets, I.V., Struminsky, A.B.: 2009, Imaging observations of quasi-periodic pulsatory nonthermal emission in two-ribbon solar flares. Solar Phys. 258, 69. DOI. ADS. ADSCrossRefGoogle Scholar
  73. Zimovets, I.V., Struminsky, A.B.: 2010, Observations of double-periodic X-ray emission in interacting systems of solar flare loops. Solar Phys. 263, 163. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. A. Kuznetsov
    • 1
    • 2
    • 3
  • I. V. Zimovets
    • 2
    • 3
    • 4
    • 5
  • A. S. Morgachev
    • 1
    • 2
  • A. B. Struminsky
    • 3
    • 6
  1. 1.Radiophysical Research Institute (NIRFI)Nizhny NovgorodRussia
  2. 2.Central Astronomical Observatory at Pulkovo of the Russian Academy of SciencesSaint-PetersburgRussia
  3. 3.Space Research Institute (IKI) of the Russian Academy of SciencesMoscowRussia
  4. 4.State Key Laboratory of Space Weather (SKSW)National Space Science Center (NSSC) of the Chinese Academy of SciencesBeijingChina
  5. 5.International Space Science Institute – Beijing (ISSI-BJ)BeijingChina
  6. 6.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations