Advertisement

Solar Physics

, Volume 291, Issue 8, pp 2373–2390 | Cite as

An Observational Study of the Recurring Formation and Dissipation of a Dynamic Filament

  • Guiping ZhouEmail author
  • Jingxiu Wang
  • Jie Zhang
Article

Abstract

Based on observations at the \(\mbox{H}\upalpha\) wavelength from the Hinode spacecraft, we report here the detailed process of a dynamical filament that showed repeated appearance and dissipation in a filament channel. First, \(\mbox{H}\upalpha\) short fibrils spreading in the pre-formed filament channel joined into longer threads. The joining process was found to be accompanied by small-scale brightening activity, indicating the possible involvement of magnetic reconnection. The forming filament was thickened by merging the neighboring dark threads that were nearly parallel to the axis and also those adjacent to its main endpoints. The formed filament as a single coherent structure only existed for tens of minutes, immediately followed by the dissipation. The dissipation appeared to start with expansion of the filament body, ascending and stripping away of the filament threads, and mass drainage along the legs of the filament. The formation–dissipation process of the filament was repeated three times within the four-hour observational window of Hinode. These observations indicate that the filament structure is highly dynamic. This study provides the observational evidence to confirm the hypothesis of Martin et al. (Ann. Geophys. 26, 3061, 2008) on the irreversible build-up of magnetic fields in the corona by discrete threads or groups of threads ascending bodily into the corona.

Keywords

Prominences, Formation and Evolution Corona, Structures Magnetic fields, Photosphere 

Notes

Acknowledgements

We sincerely thank Saku Tsuneta for his very helpful suggestions and discussions. We are deeply grateful to the anonymous referee for many insightful and valuable suggestions that significantly improved the quality of the article. We thank all members of Hinode teams for providing the wonderful data. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. The work is supported by the National Natural Science Foundation of China (11322329, 10973019, 11533008, 11573038, and 11303049), the National Key Basic Research Science Foundation (G2011CB811402), and the Open Research Program of Key Laboratory of Solar Activity, National Astronomical Observatories of China (KLSA201416). J. Zhang is supported by NSF AGS-1156120 and NSF AGS-1249270.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2016_972_MOESM1_ESM.mov (14.6 mb)
(MOV 14.6 MB)

References

  1. Babcock, H.W., Babcock, H.D.: 1955, Astrophys. J. 121, 349. ADS.  DOI. ADSCrossRefGoogle Scholar
  2. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Astrophys. J. 343, 971. ADS.  DOI. ADSCrossRefGoogle Scholar
  3. Bone, L.A., van Driel-Gesztelyi, L., Culhane, J.L., Aulanier, G., Liewer, P.: 2009, Solar Phys. 259, 31. ADS.  DOI. ADSCrossRefGoogle Scholar
  4. Chae, J.: 2003, Astrophys. J. 584, 1084. ADS.  DOI. ADSCrossRefGoogle Scholar
  5. Chae, J., Moon, Y.-J., Pevtsov, A.A.: 2004, Astrophys. J. Lett. 602, L65. ADS.  DOI. ADSCrossRefGoogle Scholar
  6. Chae, J., Wang, H.M., Qiu, J., Goode, P.R., Strous, L., Yun, H.S.: 2001, Astrophys. J. 560, 476. ADS.  DOI. ADSCrossRefGoogle Scholar
  7. Chen, A.Q., Wang, J.X.: 2012, Astron. Astrophys. 543, A49. ADS.  DOI. ADSCrossRefGoogle Scholar
  8. Engvold, O.: 1976, Solar Phys. 49, 283. ADS.  DOI. ADSCrossRefGoogle Scholar
  9. Engvold, O.: 1998, In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167 CS-150, Astron. Soc. Pacific, San Francisco, 23. ADS. Google Scholar
  10. Engvold, O.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Structures and Dynamics of Solar Filaments – Challenges in Observing and Modeling. Multi-Wavelength Investigations of Solar Activity, IAU Symp. 223, Cambridge University Press, Cambridge 187. ADS.  DOI. Google Scholar
  11. Foukal, P.: 1971a, Solar Phys. 19, 59. ADS.  DOI. ADSCrossRefGoogle Scholar
  12. Foukal, P.: 1971b, Solar Phys. 20, 298. ADS.  DOI. ADSCrossRefGoogle Scholar
  13. Gaizauskas, V.: 1998, In: Webb, D., Rust, D., Schmieder, B. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167 CS-150, Astron. Soc. Pacific, San Francisco, 257. ADS. Google Scholar
  14. Gaizauskas, V., Mackay, D.H., Harvey, K.L.: 2001, Astrophys. J. 558, 888. ADS.  DOI. ADSCrossRefGoogle Scholar
  15. Gaizauskas, V., Zirker, J.B., Sweetland, C., Kovacs, A.: 1997, Astrophys. J. 479, 448. ADS.  DOI. ADSCrossRefGoogle Scholar
  16. Galsgaard, K., Longbottom, A.W.: 1999, Astrophys. J. 510, 444. ADS.  DOI. ADSCrossRefGoogle Scholar
  17. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.: 2007, Solar Phys. 243, 63. ADS.  DOI. ADSCrossRefGoogle Scholar
  18. Heinzel, P., Anzer, U., Schmieder, B., Schwartz, P.: 2003, In: Wilson, A. (ed.) International Solar Cycle Studies Symposium, SP-535, ESA, Noordwijk, 447. ADS. Google Scholar
  19. Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., et al.: 2008, Solar Phys. 249, 233. ADS.  DOI. ADSCrossRefGoogle Scholar
  20. Kliem, B., Török, T., Titov, V.S., Lionello, R., Linker, J.A., Liu, R., Liu, C., Wang, H.M.: 2014, Astrophys. J. 792, 107. ADS.  DOI. ADSCrossRefGoogle Scholar
  21. Kubo, M., Yokoyama, T., Katsukawa, Y., Lites, B., Tsuneta, S., Suematsu, Y., et al.: 2007, Publ. Astron. Soc. Japan 59, S779. ADS.  DOI. ADSCrossRefGoogle Scholar
  22. Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1983, Solar Phys. 83, 135. ADS.  DOI. ADSCrossRefGoogle Scholar
  23. Li, L.P., Zhang, J.: 2013, Solar Phys. 282, 147. ADS.  DOI. ADSCrossRefGoogle Scholar
  24. Lin, Y.: 2004, Magnetic Field Topology Inferred from Studies of Fine Threads in Solar Filaments. Ph.D. thesis, University of Oslo, 67. Google Scholar
  25. Lin, Y., Engvold, O., Rouppe van der Voort, L.H.M., Wiik, J.E., Berger, T.E.: 2005, Solar Phys. 226, 239. ADS.  DOI. ADSCrossRefGoogle Scholar
  26. Lin, Y., Engvold, O., Rouppe van der Voort, L.H.M., van Noort, M.: 2007, Solar Phys. 246, 65. ADS.  DOI. ADSCrossRefGoogle Scholar
  27. Lin, Y., Engvold, O., Rouppe van der Voort, L.H.M.: 2012, Astrophys. J. 747, 129. ADS.  DOI. ADSCrossRefGoogle Scholar
  28. Lin, Y., Engvold, O., Wiik, J.E.: 2003, Solar Phys. 216, 109. ADS.  DOI. ADSCrossRefGoogle Scholar
  29. Lin, Y., Martin, S.F., Engvold, O.: 2008, In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Filament Substructures and Their Interrelation, Subsurface and Atmospheric Influences on Solar Activity CS-383, Astron. Soc. Pacific, San Francisco, 235. ADS. Google Scholar
  30. Lin, Y., Soler, R., Engvold, O., Ballester, J.L., Langangen, Ø., Oliver, R., Rouppe van der Voort, L.H.M.: 2009, Astrophys. J. 704, 870. ADS.  DOI. ADSCrossRefGoogle Scholar
  31. Lites, B.W., Akin, D.L., Card, G., Cruz, T., Duncan, D.W., Edwards, C.G., et al.: 2013, Solar Phys. 283, 579. ADS.  DOI. ADSCrossRefGoogle Scholar
  32. Lites, B.W., Ichimoto, K.: 2013, Solar Phys. 283, 601. ADS.  DOI. ADSCrossRefGoogle Scholar
  33. Litvinenko, Y.E.: 1999, Astrophys. J. 515, 435. ADS.  DOI. ADSCrossRefGoogle Scholar
  34. Litvinenko, Y.E.: 2000, Solar Phys. 196, 369. ADS.  DOI. ADSCrossRefGoogle Scholar
  35. Litvinenko, Y.E.: 2010, Astrophys. J. 720, 948. ADS.  DOI. ADSCrossRefGoogle Scholar
  36. Litvinenko, Y.E., Chae, J., Park, S.-Y.: 2007, Astrophys. J. 662, 1302. ADS.  DOI. ADSCrossRefGoogle Scholar
  37. Litvinenko, Y.E., Martin, S.F.: 1999, Solar Phys. 190, 45. ADS.  DOI. ADSCrossRefGoogle Scholar
  38. Litvinenko, Y.E., Wheatland, M.S.: 2005, Astrophys. J. 630, 587. ADS.  DOI. ADSCrossRefGoogle Scholar
  39. Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.M.: 2012, Astrophys. J. 756, id 59. ADS.  DOI.
  40. Mackay, D.H.: 2005, In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar Activity, CS-346, Astron. Soc. Pacific, San Francisco, 177. ADS. Google Scholar
  41. Mackay, D.H.: 2015, In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astron. Space Phys. Lib. 415, Springer, Switzerland, 355. ADS.  DOI. Google Scholar
  42. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Space Sci. Rev. 151, 333. ADS.  DOI. ADSCrossRefGoogle Scholar
  43. Martens, P.C., Zwaan, C.: 2001, Astrophys. J. 558, 872. ADS.  DOI. ADSCrossRefGoogle Scholar
  44. Martin, S.F.: 1986, In: Poland, A.I. (ed.) Coronal and Prominence Plasmas, Goddard Space Flight Center, Greenbelt 73. ADS. Google Scholar
  45. Martin, S.F.: 1989, Solar Phys. 121, 215. ADS.  DOI. ADSCrossRefGoogle Scholar
  46. Martin, S.F.: 1990a, Lect. Notes Phys. 363, 1. ADS.  DOI. ADSCrossRefGoogle Scholar
  47. Martin, S.F.: 1990b, In: Stenflo, J.O. (ed.) Solar Photosphere: Structure, Convection, and Magnetic Fields, IAU Symp. 138, Kluwer, Dordrecht, 129. ADS. CrossRefGoogle Scholar
  48. Martin, S.F.: 1998a, In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167 CS-150, Astron. Soc. Pacific, San Francisco, 419. ADS. Google Scholar
  49. Martin, S.F.: 1998b, Solar Phys. 182, 107. ADS.  DOI. ADSCrossRefGoogle Scholar
  50. Martin, S.F.: 2015, In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astron. Space Phys. Lib. 415, Springer, Switzerland, 205. ADS.  DOI. Google Scholar
  51. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, 433, Kluwer, Dordrecht, 303. ADS. CrossRefGoogle Scholar
  52. Martin, S.F., Lin, Y., Engvold, O.: 2008, Solar Phys. 250, 31. ADS.  DOI. ADSCrossRefGoogle Scholar
  53. Martin, S.F., Livi, S.H.B., Wang, J.: 1985, Aust. J. Phys. 38, 929. ADS. ADSCrossRefGoogle Scholar
  54. Martin, S.F., McAllister, A.H.: 1997, In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, Am. Geophys. Union, Washington, 127. ADS.  DOI. CrossRefGoogle Scholar
  55. Martin, S.F., Panasenco, O., Berger, M.A., Engvold, O., Lin, Y., Pevtsov, A.A., Srivastava, N.: 2012, In: Rimmele, T., Tritschler, A., Wöger, F., Collados, V., Socos-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P., Goode, P., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, CS-463, Astron. Soc. Pacific, San Francisco, 157. ADS. Google Scholar
  56. Martin, S.F., Panasenco, O., Engvold, O., Lin, Y.: 2008, Ann. Geophys. 26, 3061. ADS.  DOI. ADSCrossRefGoogle Scholar
  57. Parenti, S.: 2014, Living Rev. Solar Phys. 11, 1. ADS.  DOI. ADSCrossRefGoogle Scholar
  58. Pevtsov, A.A., Balasubramaniam, K.S., Rogers, J.W.: 2003, Astrophys. J. 595, 500. ADS.  DOI. ADSCrossRefGoogle Scholar
  59. Ridgway, C., Priest, E.R.: 1993, Solar Phys. 146, 277. ADS.  DOI. ADSCrossRefGoogle Scholar
  60. Rompolt, B., Bogdan, T.: 1986, Coronal and Prominence Plasmas, N87-20871 13-92, Goddard Space Flight Center, Greenbelt, 81. ADS. Google Scholar
  61. Schmieder, B., Aulanier, G., Mein, P., López Ariste, A.: 2006, Solar Phys. 238, 245. ADS.  DOI. ADSCrossRefGoogle Scholar
  62. Schmieder, B., Henoux, J.C., van Driel-Gesztelyi, L., Simnett, G.: 1991, Adv. Space Res. 11, 95. ADS.  DOI. ADSCrossRefGoogle Scholar
  63. Sheeley, N.R. Jr., Warren, H.P.: 2012, Astrophys. J. 749, 40. ADS.  DOI. ADSCrossRefGoogle Scholar
  64. Shimizu, T., Katsukawa, Y., Matsuzaki, K., Ichimoto, K., Kano, R., Deluca, E.E., et al.: 2007, Publ. Astron. Soc. Japan 59, S845. ADS.  DOI. ADSCrossRefGoogle Scholar
  65. Shimizu, T., Nagata, S., Tsuneta, S., Tarbell, T., Edwards, C., Shine, R., et al.: 2008, Solar Phys. 249, 221. ADS.  DOI. ADSCrossRefGoogle Scholar
  66. Smith, S.F.: 1968, In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, Reidel, Dordrecht, 267. ADS. CrossRefGoogle Scholar
  67. Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., et al.: 2008, Solar Phys. 249, 197. ADS.  DOI. ADSCrossRefGoogle Scholar
  68. Švestka, Z., Jackson, B.V., Machado, M.E. (eds.): 1992, Eruptive Solar Flares, Proc. IAU Coll. 133, Springer, Berlin, 409. Lecture Notes in Physics 399, ADS. Google Scholar
  69. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., et al.: 2008, Solar Phys. 249, 167. ADS.  DOI. ADSCrossRefGoogle Scholar
  70. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Astrophys. J. 343, 971. ADS.  DOI. ADSCrossRefGoogle Scholar
  71. Wang, J.X., Li, W., Denker, C., Lee, C., Wang, H.M., Goode, P.R., McAllister, A., Martin, S.F.: 2000, Astrophys. J. 530, 1071. ADS.  DOI. ADSCrossRefGoogle Scholar
  72. Wang, Y.-M.: 2001, Astrophys. J. 560, 456. ADS.  DOI. ADSCrossRefGoogle Scholar
  73. Wang, Y.-M., Muglach, K.: 2007, Astrophys. J. 666, 1284. ADS.  DOI. ADSCrossRefGoogle Scholar
  74. Welsch, B.T., DeVore, C.R., Antiochos, S.K.: 2005, Astrophys. J. 634, 1395. ADS.  DOI. ADSCrossRefGoogle Scholar
  75. Wood, P., Martens, P.C.: 2003, Solar Phys. 218, 123. ADS.  DOI. ADSCrossRefGoogle Scholar
  76. Yan, X.L., Xue, Z.K., Pan, G.M., Wang, J.C., Xiang, Y.Y., Kong, D.F., Yang, L.H.: 2015, Astrophys. J. Suppl. 219, 17. ADS.  DOI. ADSCrossRefGoogle Scholar
  77. Yang, B., Jiang, Y.C., Yang, J.Y., Hong, J.C., Xu, Z.: 2015, Astrophys. J. 803, 86. ADS.  DOI. ADSCrossRefGoogle Scholar
  78. Zhou, G.P., Wang, J.X., Cao, Z.L.: 2003, Astron. Astrophys. 397, 1057. ADS.  DOI. ADSCrossRefGoogle Scholar
  79. Zhu, C.M., Alexander, D.: 2014, Solar Phys. 289, 279. ADS.  DOI. ADSCrossRefGoogle Scholar
  80. Zhu, C.M., Liu, R., Alexander, D., Sun, X.D., McAteer, R.T.J.: 2015, Astrophys. J. 813, 60. ADS.  DOI. ADSCrossRefGoogle Scholar
  81. Zirker, J.B., Engvold, O., Martin, S.F.: 1998, Nature 396, 440. ADS.  DOI. ADSCrossRefGoogle Scholar
  82. Zirker, J.B., Martin, S.F., Harvey, K., Gaizauskas, V.: 1997, Solar Phys. 175, 27. ADS.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Solar Activity, National Astronomical ObservatoriesChinese Academy of ScienceBeijingChina
  2. 2.School of Physics, Astronomy and Computational SciencesGeorge Mason UniversityFairfaxUSA

Personalised recommendations