Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coronal Hole and Solar Global Magnetic Field Evolution in 1976 – 2012


We study the spatial-temporal evolution of a coronal hole and compare it with that of the solar global magnetic field in Cycles 21 – 23 (1976 – 2012). We also analyze the latitude-longitude distribution dynamics of coronal holes and the regularities in the global magnetic field associated with the solar polar field reversal. Polar and non-polar coronal hole populations are considered. The investigation reveals some temporal and spatial regularities in coronal hole distributions that match the global magnetic-field cycle evolution well. The results show that the non-polar coronal hole longitudinal distribution follows all configuration changes in the global magnetic-field structure. Reorganizations of the global magnetic field and coronal hole distributions occur simultaneously during a time interval of a few solar rotations. The cycle evolution of the non-polar coronal holes reflects the transition of the solar global magnetic field from the zonal structure to sectorial and vice versa. Two different types of waves of non-polar coronal holes are revealed from their latitudinal distribution. The first are short poleward waves. They trace the poleward motion of the unipolar photospheric magnetic fields from approximately \(35^{\circ}\) to the associated pole in each hemisphere and the redevelopment of a new-polarity polar CH. Although they start the poleward movement before the change of the polar magnetic field in the associated hemisphere, they reach the pole after the polar reversal. The other type of non-polar CH wave forms two sinusoidal branches associated with the positive- and negative-polarity magnetic fields. The complete period of the wave is equal to \(\approx268~\mbox{CRs}\) (22 years). These wave CHs arrive at high latitudes during declining phases when the new-polarity polar CHs are already completely formed.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12


  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona, I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI .

  2. Altschuler, M.D., Trotter, D.E., Newkirk, G.J., Howard, R.: 1975, Tabulation of the harmonic coefficients of the solar magnetic fields. Solar Phys. 41, 225. DOI .

  3. Altschuler, M.D., Levine, R.H., Stix, M., Harvey, J.: 1977, High resolution mapping of the magnetic field of the solar corona. Solar Phys. 51, 345. DOI .

  4. Belenko, I.A.: 2001, Coronal hole evolution during 1996 – 1999. Solar Phys. 199, 23. DOI .

  5. Bilenko, I.A.: 2002, Coronal holes and the solar polar field reversal. Astron. Astrophys. 396, 657. DOI .

  6. Bilenko, I.A.: 2004a, Formation and evolution of different type coronal holes. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, Proceedings IAU Symposium, 223, 373. DOI .

  7. Bilenko, I.A.: 2004b, Longitudinal distribution of coronal holes during 1976 – 2002. Solar Phys. 221, 261. DOI .

  8. Bilenko, I.A.: 2005, Identification of the sources of the high-speed and low-speed streams of the solar wind. Int. J. Geomagn. Aeron. 6, GI1009. DOI .

  9. Bilenko, I.A.: 2012, Statistical analysis of the structure and dynamics of coronal hole magnetic fields. In: Ballester, P., Egret, D., Lorente, N.P.F. (eds.) Astronomical Data Analysis Software and Systems XXI, ASP, 461, 479.

  10. Bilenko, I.A.: 2014, Influence of the solar global magnetic-field structure evolution on CMEs. Solar Phys. 289, 4209. DOI .

  11. Bohlin, J.D., Sheeley, N.R.J.: 1978, Extreme ultraviolet observations of coronal holes, II: Association of holes with solar magnetic fields and a model for their formation during the solar cycle. Solar Phys. 56, 125. DOI .

  12. Bravo, S., Stewart, G.A.: 1997, Fast and slow wind from solar coronal holes. Astrophys. J. 489, 992.

  13. Bumba, V., Klvan̆a, M., Sýkora, J.: 1995, Coronal holes and their relation to the background and local magnetic fields. Astron. Astrophys. 298, 923.

  14. Chapman, S., Bartels, J.: 1940, Geomagnetism, Oxford Univ. Press, Oxford.

  15. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI .

  16. Dorotovic̆, I.: 1996, Area of polar coronal holes and sunspot activity: Years 1939 – 1993. Solar Phys. 167, 419. DOI .

  17. Fox, P., McIntosh, P., Wilson, P.R.: 1998, Coronal holes and the polar field reversals. Solar Phys. 177, 375. DOI .

  18. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI .

  19. Harvey, K.L., Sheeley, N.R.J., Harvey, J.W.: 1982, Magnetic measurements of coronal holes during 1975 – 1980. Solar Phys. 79, 149. DOI .

  20. Hess Webber, S.A., Karna, N., Pesnell, W.D., Kirk, M.S.: 2014, Areas of polar coronal holes from 1996 through 2010. Solar Phys. 289, 4047. DOI .

  21. Hoeksema, J.T.: Structure and evolution of the large scale solar and heliospheric magnetic fields, Ph.D. thesis, Stanford Univ., CA, 1984.

  22. Hoeksema, J.T., Scherrer, P.H.: 1986, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976 – 1985. Solar Phys. 105, 205. DOI .

  23. Hoeksema, J.T., Scherrer, P.H.: 1988, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976 – 1985. Solar-Geophys. Data 105, 383.

  24. Ikhsanov, R.N., Ivanov, V.G.: 1999, Properties of space and time distribution of solar coronal holes. Solar Phys. 188, 245. DOI .

  25. Ikhsanov, R.N., Tavastsherna, K.S.: 2013, High-latitude coronal holes and polar faculae in the 21st – 23rd solar activity cycles. Geomagn. Aeron. 53, 896. DOI .

  26. Ikhsanov, R.N., Tavastsherna, K.S.: 2015, Latitude-temporal evolution of coronal holes in cycles 21 – 23. Geomagn. Aeron. 55, 877. DOI .

  27. Insley, J.E., Moore, V., Harrison, R.A.: 1995, The differential rotation of the corona as indicated by coronal holes. Solar Phys. 160, 1. DOI .

  28. Ivanov, E.V., Obridko, V.N.: 2014, Role of the large-scale solar magnetic field structure in the global organization of solar activity. Geomagn. Aeron. 54, 996. DOI .

  29. Levine, R.H.: 1977, Evolution of photospheric magnetic field patterns during SKYLAB. Solar Phys. 54, 327. DOI .

  30. McIntosh, P.S., Thompson, R.J., Willock, E.C.: 1992, A 600-day periodicity in solar coronal holes. Nature 360, 322. DOI .

  31. Miralles, M.P., Cranmer, S.R., Kohl, J.L.: 2001, Ultraviolet coronagraph spectrometer observations of a high-latitude coronal hole with high oxygen temperatures and the next solar cycle polarity. Astrophys. J. 560, L193. DOI .

  32. Miralles, M.P., Cranmer, S.R., Kohl, J.L.: 2002, Cyclic variation in the plasma properties of coronal holes. In: Wilso, A. (ed.) SOHO 11. From Solar Min to Max: Half a Solar Cycle with SOHO, ESA SP, 508, 351.

  33. Miralles, M.P., Cranmer, S.R., Kohl, J.L.: 2006, Coronal hole properties during the first decade of UVCS/SOHO. In: Lacoste, H. (ed.) SOHO 17 – 10 Years of SOHO and Beyond, ESA SP, 617, ESTEC, The Netherlands, 15.

  34. Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303. DOI .

  35. Obridko, V.N., Shelting, B.D.: 1989, Coronal holes as indicators of large-scale magnetic fields in the corona. Solar Phys. 124, 73. DOI .

  36. Obridko, V.N., Shelting, B.D., Livshits, I.M.: 2011, Relationship between the parameters of coronal holes and hihg-speed solar wind streams over an activity cycle. Solar Phys. 270, 297. DOI .

  37. Sanchez-Ibarra, A., Barraza-Paredes, M.: 1992, Catalog of coronal holes, 1970 – 1991, report UAG-102, World Data Center for a Solar–Terrestrial Physics, National Geophysical Data Center, Boulder.

  38. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI .

  39. Stix, M.: 1977, Coronal holes and the large-scale solar magnetic field. Astron. Astrophys. 59, 73.

  40. Tavastsherna, K.S., Polyakow, E.V.: 2014, Coronal holes, large-scale magnetic field, and activity complexes in solar cycle 23. Geomagn. Aeron. 54, 953. DOI .

  41. Tavastsherna, K.S., Tlatov, A.G.: 2004, Properties of the magnetic field in the coronal holes in solar cycle 23. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-wavelength Investigations of Solar Activity, IAU Symposium, 223, 301. DOI .

  42. Temmer, M., Vrs̆nak, B., Veronig, A.M.: 2007, Periodic appearance of coronal holes and the related variation of solar wind parameters. Solar Phys. 241, 371. DOI .

  43. Timothy, A.F., Krieger, A.S., Vaiana, G.S.: 1975, The structure and evolution of coronal holes. Solar Phys. 42, 135. DOI .

  44. Tlatov, A., Tavastsherna, K., Vasil’eva, V.: 2014, Coronal holes in solar cycles 21 to 23. Solar Phys. 289, 1349. DOI .

  45. Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., Morrison, M., Ogawara, Y., Hirayama, T., Owens, J.: 1991, The soft X-ray telescope for the SOLAR-A mission. Solar Phys. 136, 37. DOI .

  46. Varsik, J.R., Wilson, P.R., Li, Y.: 1999, High-resolution studies of the solar polar magnetic fields. Solar Phys. 184, 223. DOI .

  47. Waldmeier, M.: 1981, Cyclic variations of the polar coronal hole. Solar Phys. 70, 251. DOI .

  48. Wang, Y.-M., Robbrecht, E., Sheeley, N.R.J.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372–1386. DOI .

  49. Wang, Y.M., Sheeley, N.R.J.: 1990, Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams. Astrophys. J. 365, 372. DOI .

  50. Webb, D.F., Davis, J.M., McIntosh, P.S.: 1984, Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field. Solar Phys. 92, 109. DOI .

  51. Zhao, X.P., Hoeksema, J.T., Scherrer, P.H.: 1999, Changes of the boot-shaped coronal hole boundary during whole sun month near sunspot minimum. J. Geophys. Res. 104, 9735. DOI .

Download references


We acknowledge Tlatov A.G. and all the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory team for the catalog of coronal holes used in this study.

Wilcox Solar Observatory data used in this study were obtained via the web site http://wso.stanford.edu at 2015:02:26 00:54:03 PST courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA.

NSO/Kitt Peak data used here are produced cooperatively by NSF/NOAO, NASA/GSFC, and NOAA/SEL.

The Yohkoh mission was developed and launched by ISAS/JAXA, Japan, with NASA and SERC/PPARC (UK) as international partners. This work made use of the Yohkoh Legacy data Archive at Montana State University, which is supported by NASA.

SOHO/EIT data were used. SOHO is a project of international cooperation between ESA and NASA.

Author information

Correspondence to Irina A. Bilenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bilenko, I.A., Tavastsherna, K.S. Coronal Hole and Solar Global Magnetic Field Evolution in 1976 – 2012. Sol Phys 291, 2329–2352 (2016). https://doi.org/10.1007/s11207-016-0966-2

Download citation


  • Magnetic fields, corona
  • Coronal holes
  • Solar cycle, observations