Solar Physics

, Volume 291, Issue 8, pp 2281–2328 | Cite as

Spectroscopy at the Solar Limb: II. Are Spicules Heated to Coronal Temperatures?

  • C. BeckEmail author
  • R. Rezaei
  • K. G. Puschmann
  • D. Fabbian


Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (\({\gg}\,6~\mbox{Mm}\)) using multiwavelength observations of limb spicules in different chromospheric spectral lines (Ca ii H, H\(\upepsilon\), H\(\upalpha\), Ca ii IR at 854.2 nm, He i at 1083 nm) taken with slit spectrographs and imaging spectrometers. We determine the line width of spectrally resolved line profiles in individual spicules and throughout the field of view, and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular, i.e. thin and elongated, spicules reach a height of at most about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension, of up to a few Mm, than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. The kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.


Sun: chromosphere Techniques: spectroscopic Line: profiles 



The VTT is operated by the Kiepenheuer-Institut für Sonnenphysik (KIS; Freiburg, Germany) at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias (IAC; La Laguna, Tenerife, Spain). POLIS was a joint development of the High Altitude Observatory (HAO; Boulder, USA) and the KIS. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). SOHO is a project of international cooperation between ESA and NASA. HMI data are courtesy of NASA/SDO and the HMI science team. R. Rezaei acknowledges financial support by the Deutsche Forschungsgemeinschaft under grant RE 3282/1-1. D. Fabbian acknowledges financial support by the Spanish Ministries of Research and Innovation and of Economy through projects AYA2011-24808 and CSD2007-00050.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2016_964_MOESM1_ESM.mp4 (4.1 mb)
(MP4 4.1 MB)


  1. Alissandrakis, C.E.: 1973, A spectroscopic study of solar spicules in H\(\upalpha\), H\(\upbeta\) and K. Solar Phys. 32, 345.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Anan, T., Kitai, R., Kawate, T., Matsumoto, T., Ichimoto, K., Shibata, K., Hillier, A., Otsuji, K., Watanabe, H., Ueno, S., Nagata, S., Ishii, T.T., Komori, H., Nishida, K., Nakamura, T., Isobe, H., Hagino, M.: 2010, Spicule dynamics over a plage region. Publ. Astron. Soc. Japan 62, 871.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Antolin, P., Vissers, G., Rouppe van der Voort, L.: 2012, On-disk coronal rain. Solar Phys. 280, 457.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Athay, R.G.: 2000, Are spicules related to coronal heating? Solar Phys. 197, 31.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Athay, R.G., Holzer, T.E.: 1982, The role of spicules in heating the solar atmosphere. Astrophys. J. 255, 743.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Avery, L.W.: 1970, The formation of the Ca II K line in a spinning spicule. Solar Phys. 13, 301.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Beck, C.A.R., Rezaei, R.: 2011, Spectroscopy at the solar limb. I. Average off-limb profiles and Doppler shifts of Ca II H. Astron. Astrophys. 531, A173.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Beck, C., Rezaei, R.: 2012, Chromospheric multi-wavelength observations near the solar limb: Techniques and prospects. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Magnetic Fields from the Photosphere to the Corona, Astron. Soc. Pacific Conf. Ser. 463, 257. ADS. Google Scholar
  9. Beck, C., Rezaei, R., Fabbian, D.: 2011, Stray-light contamination and spatial deconvolution of slit-spectrograph observations. Astron. Astrophys. 535, A129.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Beck, C., Rezaei, R., Puschmann, K.G.: 2013, Can spicules be detected at disc centre in broad-band Ca II H filter imaging data? Astron. Astrophys. 556, A127.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Beck, C., Schmidt, W., Kentischer, T., Elmore, D.: 2005, Polarimetric littrow spectrograph – Instrument calibration and first measurements. Astron. Astrophys. 437, 1159.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Beck, C., Bellot Rubio, L.R., Schlichenmaier, R., Sütterlin, P.: 2007, Magnetic properties of G-band bright points in a sunspot moat. Astron. Astrophys. 472, 607.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Beck, C., Schmidt, W., Rezaei, R., Rammacher, W.: 2008, The signature of chromospheric heating in Ca II H spectra. Astron. Astrophys. 479, 213.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Beck, C., Fabbian, D., Moreno-Insertis, F., Puschmann, K.G., Rezaei, R.: 2013, Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations. Astron. Astrophys. 557, A109.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Beckers, J.M.: 1968, Solar spicules (Invited Review Paper). Solar Phys. 3, 367.  DOI. ADS. ADSGoogle Scholar
  16. Beckers, J.M.: 1972, Solar spicules. Annu. Rev. Astron. Astrophys. 10, 73.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Bendlin, C., Wiehr, E., Stellmacher, G.: 1988, Spectroscopic analysis of prominence emissions. Astron. Astrophys. 197, 274. ADS. ADSGoogle Scholar
  18. Berger, T.E., Shine, R.A., Slater, G.L., Tarbell, T.D., Title, A.M., Okamoto, T.J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B.W., Shimizu, T.: 2008, Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Lett. 676, L89.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Bohlin, J.D., Vogel, S.N., Purcell, J.D., Sheeley, N.R. Jr., Tousey, R., Vanhoosier, M.E.: 1975, A newly observed solar feature – Macrospicules in He II 304 A. Astrophys. J. Lett. 197, L133.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Cabrera Solana, D., Bellot Rubio, L.R., Beck, C., Del Toro Iniesta, J.C.: 2007, Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds. Astron. Astrophys. 475, 1067.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Casini, R., López Ariste, A., Tomczyk, S., Lites, B.W.: 2003, Magnetic maps of prominences from full Stokes analysis of the He I D3 line. Astrophys. J. Lett. 598, L67.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Cavallini, F.: 2006, IBIS: A new post-focus instrument for solar imaging spectroscopy. Solar Phys. 236, 415.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Centeno, R., Trujillo Bueno, J., Asensio Ramos, A.: 2010, On the magnetic field of off-limb spicules. Astrophys. J. 708, 1579.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Collados, M., Lagg, A., Díaz García, J.J., Hernández Suárez, E., López López, R., Páez Mañá, E., Solanki, S.K.: 2007, Tenerife infrared polarimeter II. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astron. Soc. Pacific Conf. Ser. 368, 611. ADS. Google Scholar
  25. Collados, M., Bettonvil, F., Cavaller, L., Ermolli, I., Gelly, B., Grivel-Gelly, C., Pérez, A., Socas-Navarro, H., Soltau, D., Volkmer, R.: 2010, European solar telescope: Project status. In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) Ground-Based and Airborne Telescopes III, SPIE Conf. Ser. 7733, 77330H.  DOI. ADS. CrossRefGoogle Scholar
  26. De Pontieu, B., Haerendel, G.: 1998, Weakly damped Alfven waves as drivers for spicules. Astron. Astrophys. 338, 729. ADS. ADSGoogle Scholar
  27. De Pontieu, B., Erdélyi, R., James, S.P.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536. ADS.  DOI. ADSCrossRefGoogle Scholar
  28. De Pontieu, B., Hansteen, V.H., Rouppe van der Voort, L., van Noort, M., Carlsson, M.: 2007a, High-resolution observations and numerical simulations of chromospheric fibrils and mottles. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astron. Soc. Pacific Conf. Ser. 368. ADS. Google Scholar
  29. De Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M., Schrijver, C.J., Tarbell, T.D., Title, A.M., Shine, R.A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., Nagata, S.: 2007b, A tale of two spicules: The impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan 59, S655.  DOI. ADS. CrossRefGoogle Scholar
  30. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. De Pontieu, B., Carlsson, M., Rouppe van der Voort, L.H.M., Rutten, R.J., Hansteen, V.H., Watanabe, H.: 2012, Ubiquitous torsional motions in type II spicules. Astrophys. J. Lett. 752, L12.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331.  DOI. ADS.
  33. Dunn, R.B.: 1964, An evacuated tower telescope. Appl. Opt. 3, 1353.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Dunn, R.B., Smartt, R.N.: 1991, High resolution telescopes at the National Solar Observatory. Adv. Space Res. 11, 139.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Engvold, O., Halvorsen, H.D.: 1973, New identifications of disk emission lines in the Ca II H and K line wings. Solar Phys. 28, 23.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Felipe, T., Khomenko, E., Collados, M., Beck, C.: 2010, Multi-layer study of wave propagation in sunspots. Astrophys. J. 722, 131.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Gandorfer, A.M., Steiner, H.P.P.P., Aebersold, F., Egger, U., Feller, A., Gisler, D., Hagenbuch, S., Stenflo, J.O.: 2004, Solar polarimetry in the near UV with the Zurich Imaging Polarimeter ZIMPOL II. Astron. Astrophys. 422, 703.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Goodman, M.L.: 2012, Acceleration of type II spicules in the solar chromosphere. Astrophys. J. 757, 188.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Grossmann-Doerth, U., Schmidt, W.: 1992, Chromospheric fine structure revisited. Astron. Astrophys. 264, 236. ADS. ADSGoogle Scholar
  40. Guerreiro, N., Carlsson, M., Hansteen, V.: 2013, Numerical simulations of spicule acceleration. Astrophys. J. 766, 128.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Hammer, R., Musielak, Z.E., Routh, S., Nesis, A.: 2008, Spicules: Energetics and the role of magnetic waves. In: Peter, H. (ed.) 12th European Solar Phys. Meeting 12, 3. ADS. Google Scholar
  42. Hansteen, V.H., De Pontieu, B., Rouppe van der Voort, L., van Noort, M., Carlsson, M.: 2006, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. Lett. 647, L73.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. He, J.-S., Tu, C.-Y., Marsch, E., Guo, L.-J., Yao, S., Tian, H.: 2009, Upward propagating high-frequency Alfvén waves as identified from dynamic wave-like spicules observed by SOT on Hinode. Astron. Astrophys. 497, 525.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Heggland, L., De Pontieu, B., Hansteen, V.H.: 2009, Observational signatures of simulated reconnection events in the solar chromosphere and transition region. Astrophys. J. 702, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Henriques, V.M.J., Kuridze, D., Mathioudakis, M., Keenan, F.P.: 2016, Quiet-Sun H\(\upalpha\) transients and corresponding small-scale transition region and coronal heating. Astrophys. J. 820, 124.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Hollweg, J.V.: 1982, On the origin of solar spicules. Astrophys. J. 257, 345.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Jess, D.B., Mathioudakis, M., Christian, D.J., Keenan, F.P., Ryans, R.S.I., Crockett, P.J.: 2010, ROSA: A high-cadence, synchronized multi-camera solar imaging system. Solar Phys. 261, 363.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Jess, D.B., Pascoe, D.J., Christian, D.J., Mathioudakis, M., Keys, P.H., Keenan, F.P.: 2012, The origin of type I spicule oscillations. Astrophys. J. Lett. 744, L5.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Judge, P.G., Carlsson, M.: 2010, On the solar chromosphere observed at the LIMB with hinode. Astrophys. J. 719, 469.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Judge, P.G., de Pontieu, B., McIntosh, S.W., Olluri, K.: 2012, The connection of type II spicules to the corona. Astrophys. J. 746, 158.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Kamio, S., Curdt, W., Teriaca, L., Inhester, B., Solanki, S.K.: 2010, Observations of a rotating macrospicule associated with an X-ray jet. Astron. Astrophys. 510, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Kentischer, T.J., Schmidt, W., Sigwarth, M., Uexkuell, M.V.: 1998, TESOS, a double Fabry–Pérot instrument for solar spectroscopy. Astron. Astrophys. 340, 569. ADS. ADSGoogle Scholar
  53. Klimchuk, J.A.: 2012, The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. 117(A16), 12102.  DOI. ADS. Google Scholar
  54. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The hinode (solar-B) mission: An overview. Solar Phys. 243, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Kudoh, T., Shibata, K.: 1999, Alfvén wave model of spicules and coronal heating. Astrophys. J. 514, 493.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Kukhianidze, V., Zaqarashvili, T.V., Khutsishvili, E.: 2006, Observation of kink waves in solar spicules. Astron. Astrophys. 449, L35.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Kulidzanishvili, V.I., Zhugzhda, I.D.: 1983, On the problem of spicular oscillations. Solar Phys. 88, 35.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. Kurucz, R.L., Furenlid, I., Brault, J., Testerman, L.: 1984, Solar flux atlas from 296 to 1300 nm. In: Sunspot, National Solar Obs., New Mexico, ADS. Google Scholar
  59. Langangen, Ø., De Pontieu, B., Carlsson, M., Hansteen, V.H., Cauzzi, G., Reardon, K.: 2008, Search for high velocities in the disk counterpart of type II spicules. Astrophys. J. Lett. 679, L167.  DOI. ADS. ADSCrossRefGoogle Scholar
  60. Lites, B.W.: 1974, The solar fen 2L 3969. 4 disk emission line. Astron. Astrophys. 33, 363. ADS. ADSGoogle Scholar
  61. Löfdahl, M.G.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Bones, P.J., Fiddy, M.A., Millane, R.P. (eds.) Image Reconstruction from Incomplete Data, SPIE Conf. Ser. 4792, 146.  DOI. ADS. CrossRefGoogle Scholar
  62. Löfdahl, M.G., Scharmer, G.B.: 2012, Sources of straylight in the post-focus imaging instrumentation of the Swedish 1-m solar telescope. Astron. Astrophys. 537, A80.  DOI. ADS. CrossRefGoogle Scholar
  63. López Ariste, A., Casini, R.: 2005, Inference of the magnetic field in spicules from spectropolarimetry of He I D3. Astron. Astrophys. 436, 325.  DOI. ADS. ADSCrossRefGoogle Scholar
  64. López Ariste, A., Rayrole, J., Semel, M.: 2000, First results from THEMIS spectropolarimetric mode. Astron. Astrophys. Suppl. 142, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  65. Madjarska, M.S., Vanninathan, K., Doyle, J.G.: 2011, Can coronal hole spicules reach coronal temperatures? Astron. Astrophys. 532, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  66. Makita, M.: 2003, Chromospheric structure derived from flash spectra of the total solar eclipse. Publ. Natl. Astron. Obs. Jpn. 7, 1. ADS. ADSGoogle Scholar
  67. Martínez González, M.J., Asensio Ramos, A., Manso Sainz, R., Beck, C., Belluzzi, L.: 2012, Anomalous circular polarization profiles in the He I 1083.0 nm multiplet from solar spicules. Astrophys. J. 759, 16.  DOI. ADS. ADSCrossRefGoogle Scholar
  68. Martinez Pillet, V.: 1992, Stray-light effects on the solar intensity distribution. Solar Phys. 140, 207.  DOI. ADS. ADSCrossRefGoogle Scholar
  69. Mártinez Pillet, V., Collados, M., Sánchez Almeida, J., González, V., Cruz-Lopez, A., Manescau, A., Joven, E., Paez, E., Diaz, J., Feeney, O., Sánchez, V., Scharmer, G., Soltau, D.: 1999, LPSP & TIP: Full Stokes polarimeters for the Canary Islands observatories. In: Rimmele, T.R., Balasubramaniam, K.S., Radick, R.R. (eds.) High Resolution Solar Physics: Theory, Observations, and Techniques, Astron. Soc. Pacific Conf. Ser. 183, 264. ADS. Google Scholar
  70. Martínez-Sykora, J., Hansteen, V., Moreno-Insertis, F.: 2011, On the origin of the type II spicules: Dynamic three-dimensional MHD simulations. Astrophys. J. 736, 9.  DOI. ADS. ADSCrossRefGoogle Scholar
  71. Martínez-Sykora, J., Hansteen, V., DePontieu, B., Carlsson, M.: 2009, Spicule-like structures observed in three-dimensional realistic magnetohydrodynamic simulations. Astrophys. J. 701, 1569.  DOI. ADS. ADSCrossRefGoogle Scholar
  72. Matsuno, K., Hirayama, T.: 1988, The height distribution of the kinetic temperature and turbulent velocity of solar H-alpha spicules. Solar Phys. 117, 21.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Mattig, W.: 1983, On the instrumental and atmospheric stray-light for solar observations. Solar Phys. 87, 187.  DOI. ADS. ADSCrossRefGoogle Scholar
  74. McIntosh, S.W., De Pontieu, B.: 2009, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. Lett. 706, L80.  DOI. ADS. ADSCrossRefGoogle Scholar
  75. Murawski, K., Srivastava, A.K., Zaqarashvili, T.V.: 2011, Numerical simulations of solar macrospicules. Astron. Astrophys. 535, A58.  DOI. ADS. ADSCrossRefGoogle Scholar
  76. Neckel, H.: 1999, Announcement. Solar Phys. 184, 421.  DOI. ADS. ADSCrossRefGoogle Scholar
  77. Nishikawa, T.: 1988, Spicule observations with high spatial resolution. Publ. Astron. Soc. Japan 40, 613. ADS. ADSMathSciNetGoogle Scholar
  78. Oliver, R., Soler, R., Terradas, J., Zaqarashvili, T.V.: 2016, Dynamics of coronal rain and descending plasma blobs in solar prominences. II. Partially ionized case. Astrophys. J. 818, 128.  DOI. ADS. ADSCrossRefGoogle Scholar
  79. Orozco Suárez, D., Asensio Ramos, A., Trujillo Bueno, J.: 2015, Height variation of the vector magnetic field in solar spicules. Astrophys. J. Lett. 803, L18.  DOI. ADS. ADSCrossRefGoogle Scholar
  80. Paletou, F., López Ariste, A., Bommier, V., Semel, M.: 2001, Full-Stokes spectropolarimetry of solar prominences. Astron. Astrophys. 375, L39.  DOI. ADS. ADSCrossRefGoogle Scholar
  81. Pasachoff, J.M.: 1970, Fine structure in Ca II on the solar disc. Solar Phys. 12, 202.  DOI. ADS. ADSCrossRefGoogle Scholar
  82. Pasachoff, J.M., Jacobson, W.A., Sterling, A.C.: 2009, Limb spicules from the ground and from space. Solar Phys. 260, 59.  DOI. ADS. ADSCrossRefGoogle Scholar
  83. Pasachoff, J.M., Noyes, R.W., Beckers, J.M.: 1968, Spectral observations of spicules at two heights in the solar chromosphere. Solar Phys. 5, 131.  DOI. ADS. ADSCrossRefGoogle Scholar
  84. Pasachoff, J.M., Zirin, H.: 1971, On K-line central reversals. Solar Phys. 18, 27.  DOI. ADS. ADSCrossRefGoogle Scholar
  85. Pereira, T.M.D., De Pontieu, B., Carlsson, M.: 2012, Quantifying spicules. Astrophys. J. 759, 18.  DOI. ADS. ADSCrossRefGoogle Scholar
  86. Pereira, T.M.D., De Pontieu, B., Carlsson, M.: 2013, The effects of spatio-temporal resolution on deduced spicule properties. Astrophys. J. 764, 69.  DOI. ADS. ADSCrossRefGoogle Scholar
  87. Pereira, T.M.D., Rouppe van der Voort, L., Carlsson, M.: 2016, The appearance of spicules in high resolution observations of Ca II H and H\(\upalpha\). Astrophys. J. 824, 65.  DOI. ADS. ADSCrossRefGoogle Scholar
  88. Pereira, T.M.D., De Pontieu, B., Carlsson, M., Hansteen, V., Tarbell, T.D., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Wülser, J.P., Martínez-Sykora, J., Kleint, L., Golub, L., McKillop, S., Reeves, K.K., Saar, S., Testa, P., Tian, H., Jaeggli, S., Kankelborg, C.: 2014, An interface region imaging spectrograph first view on solar spicules. Astrophys. J. Lett. 792, L15.  DOI. ADS. ADSCrossRefGoogle Scholar
  89. Peter, H.: 2001, On the nature of the transition region from the chromosphere to the corona of the Sun. Astron. Astrophys. 374, 1108.  DOI. ADS. ADSCrossRefGoogle Scholar
  90. Pike, C.D., Harrison, R.A.: 1997, EUV observations of a macrospicule: Evidence for solar wind acceleration? Solar Phys. 175, 457.  DOI. ADS. ADSCrossRefGoogle Scholar
  91. Pneuman, G.W., Kopp, R.A.: 1978, Downflow in the supergranulation network and its implications for transition region models. Solar Phys. 57, 49.  DOI. ADS. ADSCrossRefGoogle Scholar
  92. Puschmann, K.G.: 2016a, Spicules and their on-disk counterparts, the main driver for solar chromospheric heating? arXiv. ADS.
  93. Puschmann, K.G.: 2016b, The GREGOR Fabry–Pérot Interferometer (GFPI). Technical Innovations and Results achieved in 2013. arXiv. ADS.
  94. Puschmann, K.G., Beck, C.: 2011, Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data. Astron. Astrophys. 533, A21.  DOI. ADS. ADSCrossRefGoogle Scholar
  95. Puschmann, K.G., Kneer, F., Seelemann, T., Wittmann, A.D.: 2006, The new Göttingen Fabry–Pérot spectrometer for two-dimensional observations of the Sun. Astron. Astrophys. 451, 1151.  DOI. ADS. ADSCrossRefGoogle Scholar
  96. Puschmann, K.G., Kneer, F., Nicklas, H., Wittmann, A.D.: 2007, From the “Göttingen” Fabry–Pérot Interferometer to the GREGOR FPI. In: Kneer, F., Puschmann, K.G., Wittmann, A.D. (eds.) Modern Solar Facilities – Advanced Solar Science, Universitätsverlag, Göttingen, 45. ADS. Google Scholar
  97. Puschmann, K.G., Balthasar, H., Bauer, S.-M., Hahn, T., Popow, E., Seelemann, T., Volkmer, R., Woche, M., Denker, C.: 2012a, The GREGOR Fabry–Pérot interferometer: A new instrument for high-resolution spectropolarimetric solar observations. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) The Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, Astron. Soc. Pacific Conf. Ser. 463, 423. ADS. Google Scholar
  98. Puschmann, K.G., Balthasar, H., Beck, C., Louis, R.E., Popow, E., Seelemann, T., Volkmer, R., Woche, M., Denker, C.: 2012b, The GREGOR Fabry–Pérot interferometer: Status report and prospects. In: Ground-Based and Airborne Instrumentation for Astronomy IV, SPIE Conf. Ser. 8446, 79.  DOI. ADS. CrossRefGoogle Scholar
  99. Puschmann, K.G., Denker, C., Kneer, F., Al Erdogan, N., Balthasar, H., Bauer, S.M., Beck, C., Bello González, N., Collados, M., Hahn, T., Hirzberger, J., Hofmann, A., Louis, R.E., Nicklas, H., Okunev, O., Martínez Pillet, V., Popow, E., Seelemann, T., Volkmer, R., Wittmann, A.D., Woche, M.: 2012c, The GREGOR Fabry–Pérot Interferometer. Astron. Nachr. 333, 880.  DOI. ADS. ADSCrossRefGoogle Scholar
  100. Puschmann, K.G., Denker, C., Balthasar, H., Louis, R.E., Popow, E., Woche, M., Beck, C., Seelemann, T., Volkmer, R.: 2013, GREGOR Fabry–Pérot interferometer and its companion the blue imaging solar spectrometer. Opt. Eng. 52(8), 081606.  DOI. ADS. ADSCrossRefGoogle Scholar
  101. Ramelli, R., Bianda, M., Merenda, L., Trujillo Bueno, T.: 2006, The Hanle and Zeeman effects in solar spicules. In: Casini, R., Lites, B.W. (eds.) Proc. SPW4, Astron. Soc. Pacific Conf. Ser. 358, 448. ADS. Google Scholar
  102. Reardon, K.P., Cavallini, F.: 2008, Characterization of Fabry–Pérot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile. Astron. Astrophys. 481, 897.  DOI. ADS. ADSCrossRefGoogle Scholar
  103. Rimmele, T.R., Wagner, J., Keil, S., Elmore, D., Hubbard, R., Hansen, E., Warner, M., Jeffers, P., Phelps, L., Marshall, H., Goodrich, B., Richards, K., Hegwer, S., Kneale, R., Ditsler, J.: 2010, The advanced technology solar telescope: Beginning construction of the world’s largest solar telescope. In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) Ground-Based and Airborne Telescopes III, SPIE Conf. Ser. 7733.  DOI. ADS. CrossRefGoogle Scholar
  104. Roberts, W.O.: 1945, A preliminary report on chromospheric spicules of extremely short lifetime. Astrophys. J. 101, 136.  DOI. ADS. ADSCrossRefGoogle Scholar
  105. Rouppe van der Voort, L.H.M., De Pontieu, B., Hansteen, V.H., Carlsson, M., van Noort, M.: 2007, Magnetoacoustic shocks as a driver of quiet-Sun mottles. Astrophys. J. Lett. 660, L169.  DOI. ADS. ADSCrossRefGoogle Scholar
  106. Rouppe van der Voort, L., Leenaarts, J., de Pontieu, B., Carlsson, M., Vissers, G.: 2009, On-disk counterparts of type II spicules in the Ca II 854.2 nm and H\(\upalpha\) lines. Astrophys. J. 705, 272.  DOI. ADS. ADSCrossRefGoogle Scholar
  107. Rouppe van der Voort, L., De Pontieu, B., Pereira, T.M.D., Carlsson, M., Hansteen, V.: 2015, Heating signatures in the disk counterparts of solar spicules in interface region imaging spectrograph observations. Astrophys. J. Lett. 799, L3.  DOI. ADS. ADSCrossRefGoogle Scholar
  108. Rutten, R.J., Stencel, R.E.: 1980, Solar limb emission lines near CA II H & K and their spatial intensity variations. Astron. Astrophys. Suppl. 39, 415. ADS. ADSGoogle Scholar
  109. Sánchez-Andrade Nuño, B., Centeno, R., Puschmann, K.G., Trujillo Bueno, J., Blanco Rodríguez, J., Kneer, F.: 2007, Spicule emission profiles observed in He I 10 830 Å. Astron. Astrophys. 472, L51.  DOI. ADS. ADSCrossRefGoogle Scholar
  110. Sánchez-Andrade Nuño, B., Bello González, N., Blanco Rodríguez, J., Kneer, F., Puschmann, K.G.: 2008, Fast events and waves in an active region of the Sun observed in H\(\upalpha\) with high spatial resolution. Astron. Astrophys. 486, 577.  DOI. ADS. ADSCrossRefGoogle Scholar
  111. Scharmer, G.B., Bjelksjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish solar telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 341. ADS. CrossRefGoogle Scholar
  112. Scharmer, G.B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J., Löfdahl, M.G., Kiselman, D., Sütterlin, P., van Noort, M., Lagg, A.: 2008, CRISP spectropolarimetric imaging of penumbral fine structure. Astrophys. J. Lett. 689, L69.  DOI. ADS. ADSCrossRefGoogle Scholar
  113. Schmidt, W., Fisher, J.: 2013, Dynamics of the Fe II 396.94 nm emission line observed at solar disk center. Astron. Astrophys. 560, A50.  DOI. ADS. ADSCrossRefGoogle Scholar
  114. Schroeter, E.H., Soltau, D., Wiehr, E.: 1985, The German solar telescopes at the Observatorio del Teide. Vistas Astron. 28, 519.  DOI. ADS. ADSCrossRefGoogle Scholar
  115. Scullion, E., Doyle, J.G., Erdélyi, R.: 2010, A spectroscopic analysis of macrospicules. Mem. Soc. Astron. Ital. 81, 737. ADS. ADSGoogle Scholar
  116. Sekse, D.H., Rouppe van der Voort, L., De Pontieu, B.: 2012, Statistical properties of the disk counterparts of type II spicules from simultaneous observations of rapid blueshifted excursions in Ca II 8542 and H\(\upalpha\). Astrophys. J. 752, 108.  DOI. ADS. ADSCrossRefGoogle Scholar
  117. Sekse, D.H., Rouppe van der Voort, L., De Pontieu, B.: 2013, On the temporal evolution of the disk counterpart of type II spicules in the quiet Sun. Astrophys. J. 764, 164.  DOI. ADS. ADSCrossRefGoogle Scholar
  118. Shibata, K., Suematsu, Y.: 1982, Why are spicules absent over plages and long under coronal holes. Solar Phys. 78, 333.  DOI. ADS. ADSCrossRefGoogle Scholar
  119. Shoji, M., Nishikawa, T., Kitai, R., Ueno, S.: 2010, Spectroscopic studies of limb spicules. I. Radial and turbulent velocities. Publ. Astron. Soc. Japan 62.  DOI. ADS.
  120. Skogsrud, H., Rouppe van der Voort, L., De Pontieu, B., Pereira, T.M.D.: 2015, On the temporal evolution of spicules observed with IRIS, SDO, and hinode. Astrophys. J. 806, 170.  DOI. ADS. ADSCrossRefGoogle Scholar
  121. Skumanich, A., Lites, B.W., Pillet, V.M., Seagraves, P.: 1997, The calibration of the advanced Stokes polarimeter. Astrophys. J. Suppl. 110, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  122. Socas-Navarro, H., Elmore, D.: 2005, Physical properties of spicules from simultaneous spectropolarimetric observations of He I and Ca II lines. Astrophys. J. Lett. 619, L195.  DOI. ADS. ADSCrossRefGoogle Scholar
  123. Socas-Navarro, H., Elmore, D., Pietarila, A., Darnell, A., Lites, B.W., Tomczyk, S., Hegwer, S.: 2006, Spinor: Visible and infrared spectro-polarimetry at the National Solar Observatory. Solar Phys. 235, 55.  DOI. ADS. ADSCrossRefGoogle Scholar
  124. Staveland, L.: 1970, Determination of the spread function for solar stray light. Solar Phys. 12, 328.  DOI. ADS. ADSCrossRefGoogle Scholar
  125. Stellmacher, G., Wiehr, E.: 1981, On the branching in the emission relations of \(\mbox{Ca}^{+}\) in prominences. Solar Phys. 71, 299.  DOI. ADS. ADSCrossRefGoogle Scholar
  126. Stellmacher, G., Wiehr, E.: 2015, Non-thermal line-broadening in solar prominences. Astron. Astrophys. 581, A141.  DOI. ADS. ADSCrossRefGoogle Scholar
  127. Stellmacher, G., Wiehr, E., Dammasch, I.E.: 2003, Spectroscopy of solar prominences simultaneously from space and ground. Solar Phys. 217, 133.  DOI. ADS. ADSCrossRefGoogle Scholar
  128. Sterling, A.C.: 2000, Solar spicules: A review of recent models and targets for future observations (Invited Review). Solar Phys. 196, 79.  DOI. ADS. ADSCrossRefGoogle Scholar
  129. Sterling, A.C., Moore, R.L., DeForest, C.E.: 2010, Hinode solar optical telescope observations of the source regions and evolution of “type II” spicules at the solar polar limb. Astrophys. J. Lett. 714, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  130. Suematsu, Y.: 1998, Solar spicules: A brief review of recent high-resolution observations. In: Guyenne, T.-D. (ed.) Solar Jets and Coronal Plumes, ESA SP 421, 19. ADS. Google Scholar
  131. Suematsu, Y., Wang, H., Zirin, H.: 1995, High-resolution observation of disk spicules. I. Evolution and kinematics of spicules in the enhanced network. Astrophys. J. 450, 411.  DOI. ADS. ADSCrossRefGoogle Scholar
  132. Suematsu, Y., Shibata, K., Neshikawa, T., Kitai, R.: 1982, Numerical hydrodynamics of the jet phenomena in the solar atmosphere. I – Spicules. Solar Phys. 75, 99.  DOI. ADS. ADSCrossRefGoogle Scholar
  133. Suematsu, Y., Katsukawa, Y., Ichimoto, K., Tsuneta, S., Okamoto, T., Nagata, S., Shimizu, T., Tarbell, T., Shine, R., Title, A.: 2007, High resolution observation of spicules in Ca II H with hinode/SOT. In: Bull. American Astron. Soc. 39, 219. ADS. Google Scholar
  134. Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Okamoto, T., Tsuneta, S., Tarbell, T., Shine, R.A.: 2008, High resolution observations of spicules with hinode/SOT. In: Matthews, S.A., Davis, J.M., Harra, L.K. (eds.) First Results from Hinode, Astron. Soc. Pacific Conf. Ser. 397, 27. ADS. Google Scholar
  135. Tandberg-Hanssen, E.: 1960, An investigation of the temperature conditions in prominences with a special study of the excitation of helium. Astrophys. Nor. 6, 161. ADS. ADSGoogle Scholar
  136. Tian, H., McIntosh, S.W., De Pontieu, B., Martínez-Sykora, J., Sechler, M., Wang, X.: 2011, Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. Astrophys. J. 738, 18.  DOI. ADS. ADSCrossRefGoogle Scholar
  137. Tian, H., DeLuca, E.E., Cranmer, S.R., De Pontieu, B., Peter, H., Martínez-Sykora, J., Golub, L., McKillop, S., Reeves, K.K., Miralles, M.P., McCauley, P., Saar, S., Testa, P., Weber, M., Murphy, N., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kleint, L., Kankelborg, C., Jaeggli, S., Carlsson, M., Hansteen, V., McIntosh, S.W.: 2014, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(27), 1255711.  DOI. ADS. CrossRefGoogle Scholar
  138. Tritschler, A., Schmidt, W., Langhans, K., Kentischer, T.: 2002, High-resolution solar spectroscopy with TESOS – Upgrade from a double to a triple system. Solar Phys. 211, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  139. Trujillo Bueno, J., Merenda, L., Centeno, R., Collados, M., Landi Degl’Innocenti, E.: 2005, The Hanle and Zeeman effects in solar spicules: A novel diagnostic window on chromospheric magnetism. Astrophys. J. Lett. 619, L191.  DOI. ADS. ADSCrossRefGoogle Scholar
  140. Tsiropoula, G., Schmieder, B.: 1997, Determination of physical parameters in dark mottles. Astron. Astrophys. 324, 1183. ADS. ADSGoogle Scholar
  141. Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M.S., Doyle, J.G., Suematsu, Y.: 2012, Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: Observations and physical parameters. Space Sci. Rev. 169, 181.  DOI. ADS. ADSCrossRefGoogle Scholar
  142. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the hinode mission: An overview. Solar Phys. 249, 167.  DOI. ADS. ADSCrossRefGoogle Scholar
  143. van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity. Solar Phys. 228, 191.  DOI. ADS. ADSCrossRefGoogle Scholar
  144. von der Lühe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: Adaptive optics system for the vacuum tower telescope at Teide Observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 187. ADS CrossRefGoogle Scholar
  145. Watanabe, T., Steenbock, W.: 1986, Fe II emission lines in the wings of CA II H and K. I – Solar Fe II 3969.4 A line. Astron. Astrophys. 165, 163. ADS. ADSGoogle Scholar
  146. Yurchyshyn, V., Abramenko, V., Goode, P.: 2013, Dynamics of chromospheric upflows and underlying magnetic fields. Astrophys. J. 767, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  147. Zachariadis, T.G., Georgakilas, A.A., Koutchmy, S., Alissandrakis, C.E., Dara, H.C.: 1999, Fine structure of the solar chromosphere: Arch-shaped mottles. Solar Phys. 184, 77.  DOI. ADS. ADSCrossRefGoogle Scholar
  148. Zhang, Y.Z., Shibata, K., Wang, J.X., Mao, X.J., Matsumoto, T., Liu, Y., Su, J.T.: 2012, Revision of solar spicule classification. Astrophys. J. 750, 16.  DOI. ADS. ADSCrossRefGoogle Scholar
  149. Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge. Google Scholar
  150. Zirker, J.B.: 1962a, On the brightness of chromospheric spicules. Astrophys. J. 135, 515.  DOI. ADS. ADSCrossRefGoogle Scholar
  151. Zirker, J.B.: 1962b, Spectral observations of solar chromospheric spicules. Astrophys. J. 136, 250.  DOI. ADS. ADSCrossRefGoogle Scholar
  152. Zwaan, C.: 1965, Sunspot models: A study of sunspot spectra. In: Recherches Astronomiques de L’Observatoire D’Utrecht 17, Dordrecht, Netherlands. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • C. Beck
    • 1
    Email author
  • R. Rezaei
    • 2
  • K. G. Puschmann
    • 3
  • D. Fabbian
    • 4
    • 5
    • 6
  1. 1.National Solar Observatory (NSO)SunspotUSA
  2. 2.Kiepenheuer-Institut für Sonnenphysik (KIS)FreiburgGermany
  3. 3.DarmstadtGermany
  4. 4.Instituto de Astrofísica de Canarias (IAC)La LagunaSpain
  5. 5.Departamento de AstrofísicaUniversidad de La Laguna (ULL)La LagunaSpain
  6. 6.Max-Planck-Institut für Sonnensytemforschung (MPS)GöttingenGermany

Personalised recommendations