Advertisement

Solar Physics

, Volume 291, Issue 8, pp 2391–2406 | Cite as

Strong Blue Asymmetry in H\(\upalpha\) Line as a Preflare Activity

  • Kyuhyoun Cho
  • Jeongwoo Lee
  • Jongchul Chae
  • Haimin Wang
  • Kwangsu Ahn
  • Heesu Yang
  • Eun-kyung Lim
  • Ram Ajor Maurya
Article

Abstract

Chromospheric activities before solar flares provide important clues to the mechanisms that initiate solar flares, but are as yet poorly understood. We report a significant and rapid H\(\upalpha\) line broadening before the solar flare SOL2011-09-29T18:08 that was detected using the unprecedented high-resolution H\(\upalpha\) imaging spectroscopy with the Fast Imaging Solar Spectrograph (FISS) installed on the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. The strong H\(\upalpha\) broadening extends as a blue excursion up to −4.5 Å and as a red excursion up to 2.0 Å, which implies a mixture of velocities in the range of \(-130~\mbox{km}\,\mbox{s}^{-1}\) to 38 km s−1 derived by applying the cloud model, comparable to the highest chromospheric motions reported before. The H\(\upalpha\) blueshifted broadening lasts for about six minutes and is temporally and spatially correlated with the start of a rising filament, which is later associated with the main phase of the flare as detected by the Atmosphere Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The potential importance of this H\(\upalpha\) blueshifted broadening as a preflare chromospheric activity is briefly discussed within the context of the two-step eruption model.

Keywords

Flares, pre-flare phenomena Heating, in flares Spectrum, visible 

Notes

Acknowledgements

We thank the NASA/SDO team for the photospheric magnetograms and UV/EUV filtergrams, and NASA/Fermi team for the GBM data. We thank Stephen White for the GBSRBS radio data. This work was supported by the National Research Foundation of Korea (NRF-2012R1A2A1A03670387). H. Wang is supported by US NSF under grants AGS 1348513 and 1408703, and NASA under grant NNX13AG13G. E.-k. Lim is supported by the Planetary system research for space exploration from KASI. J. Lee is supported by the BK21 Plus Program (21A20131111123) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF).

References

  1. Alikaeva, K.V., Chornogor, S.N.: 2004, Preflare chromospheric and photospheric line-of-sight velocities. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symposium 223, 227.  DOI. ADS. Google Scholar
  2. Beckers, J.M.: 1964, A Study of the Fine Structures in the Solar Chromosphere. PhD thesis, Sacramento Peak Observatory, Air Force Cambridge Research Laboratories, MA, USA. ADS.
  3. Benz, A. (ed.): 2002, Plasma Astrophysics, second edn., Astrophysics and Space Science Library 279.  DOI. ADS. Google Scholar
  4. Bocchialini, K., Baudin, F., Koutchmy, S., Pouget, G., Solomon, J.: 2011, Oscillatory motions observed in eruptive filaments. Astron. Astrophys. 533, A96.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Bumba, V., Křivský, L.: 1959, Chromospheric pre-flares. Bull. Astron. Inst. Czechoslov. 10, 221. ADS. ADSGoogle Scholar
  6. Canfield, R.C., Penn, M.J., Wulser, J.-P., Kiplinger, A.L.: 1990, H-alpha spectra of dynamic chromospheric processes in five well-observed X-ray flares. Astrophys. J. 363, 318.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Carroll, B.W., Ostlie, D.A.: 2007, An Introduction to Modern Astrophysics, Addison-Wesley, Reading. Google Scholar
  8. Cauzzi, G., Falchi, A., Falciani, R., Smaldone, L.A.: 1996, Coordinated observations of solar activity phenomena. II. The velocity field pattern in an elementary flare. Astron. Astrophys. 306, 625. ADS. ADSGoogle Scholar
  9. Chae, J., Park, H.-M., Ahn, K., Yang, H., Park, Y.-D., Cho, K.-S., Cao, W.: 2013a, Doppler shifts of the H\(\upalpha\) line and the Ca ii 854.2 nm line in a quiet region of the Sun observed with the FISS/NST. Solar Phys. 288, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Chae, J., Park, H.-M., Ahn, K., Yang, H., Park, Y.-D., Nah, J., Jang, B.H., Cho, K.-S., Cao, W., Goode, P.R.: 2013b, Fast imaging solar spectrograph of the 1.6 meter new solar telescope at Big Bear Solar Observatory. Solar Phys. 288, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Chifor, C., Tripathi, D., Mason, H.E., Dennis, B.R.: 2007, X-ray precursors to flares and filament eruptions. Astron. Astrophys. 472, 967.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Deubner, F.-L., Waldschik, T., Steffens, S.: 1996, Dynamics of the solar atmosphere. VI. Resonant oscillations of an atmospheric cavity: observations. Astron. Astrophys. 307, 936. ADS. ADSGoogle Scholar
  13. Falchi, A., Teriaca, L., Maltagliati, L.: 2006, The evaporation regime in a confined flare. Solar Phys. 239, 193.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Gan, W.Q., Rieger, E., Fang, C.: 1993, Semiempirical flare models with chromospheric condensation. Astrophys. J. 416, 886.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Heinzel, P., Karlicky, M., Kotrc, P., Svestka, Z.: 1994, On the occurrence of blue asymmetry in chromospheric flare spectra. Solar Phys. 152, 393.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Ichimoto, K., Kurokawa, H.: 1984, H-alpha red asymmetry of solar flares. Solar Phys. 93, 105.  DOI. ADS. ADSGoogle Scholar
  17. Joshi, B., Veronig, A.M., Lee, J., Bong, S.-C., Tiwari, S.K., Cho, K.-S.: 2011, Pre-flare activity and magnetic reconnection during the evolutionary stages of energy release in a solar eruptive flare. Astrophys. J. 743, 195.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Joshi, B., Kushwaha, U., Cho, K.-S., Veronig, A.M.: 2013, RHESSI and TRACE observations of multiple flare activity in AR 10656 and associated filament eruption. Astrophys. J. 771, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Keys, P.H., Jess, D.B., Mathioudakis, M., Keenan, F.P.: 2011, Chromospheric velocities of a C-class flare. Astron. Astrophys. 529, A127.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Kleint, L., Battaglia, M., Reardon, K., Sainz Dalda, A., Young, P.R., Krucker, S.: 2015, The fast filament eruption leading to the X-flare on 2014 March 29. Astrophys. J. 806, 9.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kundu, M.R., Gaizauskas, V., Woodgate, B.E., Schmahl, E.J., Shine, R., Jones, H.P.: 1985, A study of flare buildup from simultaneous observations in microwave, H-alpha, and UV wavelengths. Astrophys. J. Suppl. 57, 621.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Kuridze, D., Mathioudakis, M., Simões, P.J.A., Rouppe van der Voort, L., Carlsson, M., Jafarzadeh, S., Allred, J.C., Kowalski, A.F., Kennedy, M., Fletcher, L., Graham, D., Keenan, F.P.: 2015, H\(\upalpha\) line profile asymmetries and the chromospheric flare velocity field. Astrophys. J. 813, 125.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Leiko, U.M., Kondrashova, N.N.: 2015, The chromospheric line-of-sight velocity variations in a solar microflare. Adv. Space Res. 55, 886.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Malville, J.M., Schindler, M.: 1981, Oscillations of a loop prominence preceding a limb flare. Solar Phys. 70, 115.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Moon, Y.-J., Chae, J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2004, Low atmosphere reconnections associated with an eruptive solar flare. J. Korean Astron. Soc. 37, 41.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Rouppe van der Voort, L., Leenaarts, J., de Pontieu, B., Carlsson, M., Vissers, G.: 2009, On-disk counterparts of type II spicules in the Ca ii 854.2 nm and H\(\upalpha\) lines. Astrophys. J. 705, 272.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys. 275, 229.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Sekse, D.H., Rouppe van der Voort, L., De Pontieu, B., Scullion, E.: 2013, Interplay of three kinds of motion in the disk counterpart of type II spicules: upflow, transversal, and torsional motions. Astrophys. J. 769, 44.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Sterling, A.C., Harra, L.K., Moore, R.L.: 2007, New evidence for the role of emerging flux in a solar filament’s slow rise preceding its CME-producing fast eruption. Astrophys. J. 669, 1359.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Sterling, A.C., Moore, R.L., Freeland, S.L.: 2011, Insights into filament eruption onset from solar dynamics observatory observations. Astrophys. J. Lett. 731, L3.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Švestka, Z., Kopecký, M., Blaha, M.: 1962, Qualitative discussion of 244 flare spectra. II. Line asymmetry and helium lines. Bull. Astron. Inst. Czechoslov. 13, 37. ADS. ADSGoogle Scholar
  33. Wang, J., Shi, Z.: 1993, The flare-associated magnetic changes in an active region. II – Flux emergence and cancellation. Solar Phys. 143, 119.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Yang, H., Chae, J., Lim, E.-K., Park, H., Cho, K., Maurya, R.A., Song, D., Kim, Y.-H., Goode, P.R.: 2013, Velocities and temperatures of an Ellerman bomb and its associated features. Solar Phys. 288, 39.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Astronomy Program, Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.Space Weather Research LaboratoryNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Big Bear Solar ObservatoryBig Bear CityUSA
  4. 4.Korea Astronomy and Space Science InstituteDaejeonKorea

Personalised recommendations