Solar Physics

, Volume 291, Issue 7, pp 2003–2016 | Cite as

Analysis of Intermittency in Submillimeter Radio and Hard X-Ray Data During the Impulsive Phase of a Solar Flare

  • G. Giménez de Castro
  • P. J. A. Simões
  • J.-P. Raulin
  • O. M. GuimarãesJr.


We present an analysis of intermittent processes occurring during the impulsive phase of the flare SOL2012-03-13, using hard X-rays and submillimeter radio data. Intermittency is a key characteristic in turbulent plasmas and has so far only been analyzed for hard X-ray data. Since in a typical flare the same accelerated electron population is believed to produce both hard X-rays and gyrosynchrotron radiation, we compare the two time profiles by searching for intermittency signatures. For this, we define a cross-wavelet power spectrum, which is used to obtain the local intermittency measure, or \(\mathit{LIM}\). When greater than three, the square \(\mathit{LIM}\) coefficients indicate a local intermittent process. The \(\mathit{LIM}^{2}\) coefficient distribution in time and scale helps to identify avalanche or cascade energy release processes. We find two different and well-separated intermittent behaviors in the submillimeter data: for scales greater than 20 s, a broad distribution during the rising and maximum phases of the emission seems to favor a cascade process; for scales below 1 s, short pulses centered on the peak time are representative of avalanches. When applying the same analysis to hard X-rays, we find that only the scales above 10 s produce a distribution related to a cascade energy fragmentation. Our results suggest that different acceleration mechanisms are responsible for tens of keV and MeV energy ranges of electrons.


Hard X-rays, Solar flares Microwave, Solar flares Intermittency Avalanche models Wavelets 


  1. Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E.J.: 1989, Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade. Nature 338, 51. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. ADS. ADSCrossRefGoogle Scholar
  3. Bruno, R., Bavassano, B., Pietropaolo, E., Carbone, V., Veltri, P.: 1999, Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy. Geophys. Res. Lett. 26, 3185. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Charbonneau, P., McIntosh, S.W., Liu, H.-L., Bogdan, T.J.: 2001, Avalanche models for solar flares (Invited Review). Solar Phys. 203, 321. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Consolini, G., Chang, T.: 2002, Complexity, magnetic field topology, criticality, and metastability in magnetotail dynamics. J. Atmos. Solar-Terr. Phys. 64, 541. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Dinkelaker, A.N., MacKinnon, A.L.: 2013a, Wavelets, intermittency and solar flare hard X-rays 1. Local intermittency measure in cascade and avalanche scenarios. Solar Phys. 282, 471. DMac13. ADSCrossRefGoogle Scholar
  7. Dinkelaker, A.N., MacKinnon, A.L.: 2013b, Wavelets, intermittency and solar flare hard X-rays 2. LIM analysis of high time resolution BATSE data. Solar Phys. 282, 483. ADSCrossRefGoogle Scholar
  8. Farge, M.: 1992, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395. DOI. ADS. ADSMathSciNetCrossRefMATHGoogle Scholar
  9. Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Kingsley, R.K., Kingsley, J.S., Kudaka, A.S., Marcon, R., Martin, R., Marun, A., Melo, A.M., Pereyra, P., Raulin, J.-P., Rose, T., Silva Valio, A., Walber, A., Wallace, P., Yakubovich, A., Zakia, M.B.: 2008, New telescopes for ground-based solar observations at submillimeter and mid-infrared. In: Soc. Photo-Optical Instr. Eng. (SPIE) Conf. Ser. 7012. DOI. ADS. Google Scholar
  10. Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Aballay, J.L., Fernandez, G., Godoy, R., Marun, A., Valio, A., Raulin, J.-P., Giménez de Castro, C.G.: 2013, A bright impulsive solar burst detected at 30 THz. Astrophys. J. 768, 134. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G.D., Hurford, G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., Piana, M., Prato, M., Schmahl, E.J., Suarez-Garcia, E.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Lu, E.T., Hamilton, R.J.: 1991, Avalanches and the distribution of solar flares. Astrophys. J. Lett. 380, L89. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Meneveau, C.: 1991, Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469. ADSMathSciNetCrossRefMATHGoogle Scholar
  15. Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: 1994, Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J. 436, 941. ADS. ADSCrossRefGoogle Scholar
  16. Starck, J.-L., Murtagh, F.: 2006, Astronomical Image and Data Analysis, Springer, Berlin, 42. DOI. ADS. CrossRefGoogle Scholar
  17. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. TC98. ADS. ADSCrossRefGoogle Scholar
  18. Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., de La Luz, V., Luoni, M., Kaufmann, P.: 2015, Origin of the 30 THz emission detected during the solar flare on 2012 March 13 at 17:20 UT. Solar Phys. 290, 2809. DOI. ADS. ADSCrossRefGoogle Scholar
  19. White, S.M., Kundu, M.R.: 1992, Solar observations with a millimeter-wavelength array. Solar Phys. 141, 347. ADS. ADSCrossRefGoogle Scholar
  20. White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • G. Giménez de Castro
    • 1
    • 2
  • P. J. A. Simões
    • 3
  • J.-P. Raulin
    • 1
  • O. M. GuimarãesJr.
    • 1
  1. 1.CRAAMUniversidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.IAFEUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.SUPA School of Physics and AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations