Solar Physics

, Volume 291, Issue 7, pp 1957–1975 | Cite as

Angular Dependence of the Facular–Sunspot Coverage Relation as Derived by MDI Magnetograms

  • S. CriscuoliEmail author


Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified from broad-band and narrow-band imagery is positively correlated with the sunspot area and number, the relation being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ Michelson Doppler Interferometer (MDI) full-disk magnetograms acquired during solar cycle 23 and at the beginning of cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best described by a quadratic function while data averaged over six months are best described by a linear function. In both cases the coefficients of the fits show large dependence on the position over the disk and the magnetic flux. We also find that toward disk center six-month averaged data show asymmetries between the ascending and the descending phases. The implications for solar irradiance modeling are discussed.


Solar magnetic fields Photosphere – Solar cycle Observations – Sunspots Statistics 



The author is grateful to Luca Bertello for reading the manuscript and for providing useful comments and suggestions about the analysis of MDI magnetograms.


  1. Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S., Wenzler, T., Mortlock, D.J., Jaffe, A.H.: 2012, Reconstruction of total solar irradiance 1974 – 2009. Astron. Astrophys. 541, A27.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bertello, L., Ulrich, R.K., Boyden, J.E.: 2010, The Mount Wilson Ca II K plage index time series. Solar Phys. 264, 31.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bonomo, A.S., Lanza, A.F.: 2008, Modelling solar-like variability for the detection of Earth-like planetary transits. I. Performance of the three-spot modelling and harmonic function fitting. Astron. Astrophys. 482, 341.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Brown, G.M., Evans, D.R.: 1980, The use of solar faculae in studies of the sunspot cycle. Solar Phys. 66, 233.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Carrington, R.C.: 1858, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. Roy. Astron. Soc. 19, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chapman, G.A., Cookson, A.M., Dobias, J.J.: 1997, Solar variability and the relation of facular to sunspot areas during Solar Cycle 22. Astrophys. J. 482, 541. ADS. ADSCrossRefGoogle Scholar
  7. Chapman, G.A., Dobias, J.J., Arias, T.: 2011, Facular and sunspot areas during Solar Cycles 22 and 23. Astrophys. J. 728, 150.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the Solar Cycle. Space Sci. Rev. 186, 35.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Couvidat, S., Rajaguru, S.P., Wachter, R., Sankarasubramanian, K., Schou, J., Scherrer, P.H.: 2012, Line-of-sight observables algorithms for the Helioseismic and Magnetic Imager (HMI) instrument tested with Interferometric Bidimensional Spectrometer (IBIS) observations. Solar Phys. 278, 217.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Criscuoli, S.: 2013, Comparison of physical properties of quiet and active regions through the analysis of magnetohydrodynamic simulations of the solar photosphere. Astrophys. J. 778, 27.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Criscuoli, S., Rast, M.P.: 2009, Photometric properties of resolved and unresolved magnetic elements. Astron. Astrophys. 495, 621.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Criscuoli, S., Uitenbroek, H.: 2014, Interpretation of solar irradiance monitor measurements through analysis of 3D MHD simulations. Astrophys. J. 788, 151.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Criscuoli, S., Ermolli, I., Del Moro, D., Giorgi, F., Tritschler, A., Uitenbroek, H., Vitas, N.: 2011, Line shape effects on intensity measurements of solar features: brightness correction to SOHO MDI continuum images. Astrophys. J. 728, 92.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Demidov, M.L., Balthasar, H.: 2009, Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue. Solar Phys. 260, 261.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S.K., Spruit, H.C., Unruh, Y., Vögler, A.: 2009, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Dumusque, X., Glenday, A., Phillips, D.F., Buchschacher, N., Collier Cameron, A., Cecconi, M., Charbonneau, D., Cosentino, R., Ghedina, A., Latham, D.W., Li, C.-H., Lodi, M., Lovis, C., Molinari, E., Pepe, F., Udry, S., Sasselov, D., Szentgyorgyi, A., Walsworth, R.: 2015, HARPS-N observes the Sun as a star. Astrophys. J. Lett. 814, L21.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Ermolli, I., Criscuoli, S., Giorgi, F.: 2011, Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contrib. Astron. Obs. Skaln. Pleso 41, 73. ADS. ADSGoogle Scholar
  18. Ermolli, I., Criscuoli, S., Centrone, M., Giorgi, F., Penza, V.: 2007, Photometric properties of facular features over the activity cycle. Astron. Astrophys. 465, 305.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Ermolli, I., Solanki, S.K., Tlatov, A.G., Krivova, N.A., Ulrich, R.K., Singh, J.: 2009, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Ermolli, I., Criscuoli, S., Uitenbroek, H., Giorgi, F., Rast, M.P., Solanki, S.K.: 2010, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, A55.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Woods, T.N.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Ermolli, I., Shibasaki, K., Tlatov, A., van Driel-Gesztelyi, L.: 2014, Solar cycle indices from the photosphere to the corona: measurements and underlying physics. Space Sci. Rev. 186, 105.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Fligge, M., Solanki, S.K.: 1998, Long-term behavior of emission from solar faculae: steps towards a robust index. Astron. Astrophys. 332, 1082. ADS. ADSGoogle Scholar
  24. Fligge, M., Solanki, S.K.: 2000, The solar spectral irradiance since 1700. Geophys. Res. Lett. 27, 2157.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., Atmos. 116, D20108.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Foukal, P.: 1993, The curious case of the Greenwich faculae. Solar Phys. 148, 219.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Foukal, P.: 1996, The behavior of solar magnetic plages measured from Mt. Wilson observations between 1915 – 1984. Geophys. Res. Lett. 23, 2169.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Foukal, P.: 1998, What determines the relative areas of spots and faculae on Sun-like stars? Astrophys. J. 500, 958.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Győri, L.: 2012, Study of differences between sunspot and white light facular area data determined from SDO/HMI and SOHO/MDI observations. Solar Phys. 280, 365.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Hagenaar, H.J., Schrijver, C.J., Title, A.M.: 2003, The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s). Astrophys. J. 584, 1107.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Harvey, K.L.: 1993, Magnetic Bipoles on the Sun. PhD thesis, Univ. Utrecht (1993). ADS.
  32. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Jin, C.L., Wang, J.X.: 2012, The latitude distribution of small-scale magnetic elements in Solar Cycle 23. Astrophys. J. 745, 39.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Jin, C.L., Wang, J.X., Song, Q., Zhao, H.: 2011, The Sun’s small-scale magnetic elements in Solar Cycle 23. Astrophys. J. 731, 37.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Kobel, P., Solanki, S.K., Borrero, J.M.: 2011, The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements. Astron. Astrophys. 531, A112.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Krivova, N.A., Balmaceda, L., Solanki, S.K.: 2007, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Krivova, N.A., Solanki, S.K., Unruh, Y.C.: 2011, Towards a long-term record of solar total and spectral irradiance. J. Atmos. Solar-Terr. Phys. 73, 223.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Lanza, A.F., Messina, S., Pagano, I., Rodonò, M.: 2006, A model to simulate synthetic light curves of solar-like stars. Astron. Nachr. 327, 21.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  39. Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Solar Phys. 279, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Mackay, D., Yeates, A.: 2012, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 9, 6.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Mathew, S.K., Martínez Pillet, V., Solanki, S.K., Krivova, N.A.: 2007, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Muller, R., Roudier, T.: 1984, Variability of the quiet photospheric network. Solar Phys. 94, 33.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Ortiz, A., Solanki, S.K., Domingo, V., Fligge, M., Sanahuja, B.: 2002, On the intensity contrast of solar photospheric faculae and network elements. Astron. Astrophys. 388, 1036.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Petrie, G.J.D., Petrovay, K., Schatten, K.: 2014, Solar polar fields and the 22-year activity cycle: observations and models. Space Sci. Rev. 186, 325.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Pietarila, A., Bertello, L., Harvey, J.W., Pevtsov, A.A.: 2013, Comparison of ground-based and space-based longitudinal magnetograms. Solar Phys. 282, 91.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in FORTRAN. The Art of Scientific Computing. ADS. zbMATHGoogle Scholar
  48. Priyal, M., Singh, J., Ravindra, B., Priya, T.G., Amareswari, K.: 2014, Long term variations in chromospheric features from Ca–K images at Kodaikanal. Solar Phys. 289, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Rajaguru, S.P., Sankarasubramanian, K., Wachter, R., Scherrer, P.H.: 2007, Radiative transfer effects on Doppler measurements as sources of surface effects in sunspot seismology. Astrophys. J. Lett. 654, L175.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Romano, P., Berrilli, F., Criscuoli, S., Del Moro, D., Ermolli, I., Giorgi, F., Viticchié, B., Zuccarello, F.: 2012, A comparative analysis of photospheric bright points in an active region and in the quiet Sun. Solar Phys. 280, 407.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Schwabe, M.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233. ADS. ADSCrossRefGoogle Scholar
  53. Sheeley, N.R. Jr., Cooper, T.J., Anderson, J.R.L.: 2011, Carrington maps of Ca II K-line emission for the years 1915 – 1985. Astrophys. J. 730, 51.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Singh, J., Belur, R., Raju, S., Pichaimani, K., Priyal, M., Gopalan Priya, T., Kotikalapudi, A.: 2012, Determination of the chromospheric quiet network element area index and its variation between 2008 and 2011. Res. Astron. Astrophys. 12, 201.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Solanki, S.K., Brigljevic, V.: 1992, Continuum brightness of solar magnetic elements. Astron. Astrophys. 262, L29. ADS. ADSGoogle Scholar
  56. Solanki, S.K., Schüssler, M., Fligge, M.: 2002, Secular variation of the Sun’s magnetic flux. Astron. Astrophys. 383, 706.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Spruit, H.C.: 1976, Pressure equilibrium and energy balance of small photospheric fluxtubes. Solar Phys. 50, 269.  DOI. ADS. ADSCrossRefGoogle Scholar
  58. Steiner, O.: 2005, Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae. Astron. Astrophys. 430, 691.  DOI. ADS. ADSCrossRefGoogle Scholar
  59. Tran, T., Bertello, L., Ulrich, R.K., Evans, S.: 2005, Magnetic fields from SOHO MDI converted to the Mount Wilson 150 foot solar tower scale. Astrophys. J. Suppl. 156, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  60. Ulrich, R.K., Bertello, L., Boyden, J.E., Webster, L.: 2009, Interpretation of solar magnetic field strength observations. Solar Phys. 255, 53.  DOI. ADS. ADSCrossRefGoogle Scholar
  61. Utz, D., Muller, R., Thonhofer, S., Veronig, A., Hanslmeier, A., Bodnárová, M., Bárta, M., del Toro Iniesta, J.C.: 2016, Long-term trends of magnetic bright points. I. Number of magnetic bright points at disc centre. Astron. Astrophys. 585, A39.  DOI. ADS. ADSCrossRefGoogle Scholar
  62. Wachter, R., Schou, J., Sankarasubramanian, K.: 2006, Line shape changes and Doppler measurements in solar active regions. I. A method for correcting dopplergrams from SOHO MDI. Astrophys. J. 648, 1256.  DOI. ADS. ADSCrossRefGoogle Scholar
  63. Worden, J.R., White, O.R., Woods, T.N.: 1998, Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability. Astrophys. J. 496, 998.  DOI. ADS. ADSCrossRefGoogle Scholar
  64. Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2014, Solar cycle variation in solar irradiance. Space Sci. Rev. 186, 137.  DOI. ADS. ADSCrossRefGoogle Scholar
  65. Yeo, K.L., Solanki, S.K., Krivova, N.A.: 2013, Intensity contrast of solar network and faculae. Astron. Astrophys. 550, A95.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.National Solar ObservatoryBoulderUSA

Personalised recommendations