Solar Physics

, Volume 291, Issue 6, pp 1829–1852 | Cite as

Using the WSA Model to Test the Parker Spiral Approximation for SEP Event Magnetic Connections

  • S. W. Kahler
  • C. N. Arge
  • D. A. Smith


In studies of solar energetic (\(E > 10~\mbox{MeV}\)) particle (SEP) events the Parker spiral (PS) field approximation, based only on the measured 1 AU solar wind (SW) speed \(V\)sw, is nearly always used to determine the coronal or photospheric source locations of the 1 AU magnetic fields. There is no objective way to validate that approximation, but here we seek guidelines for optimizing its application. We first review recent SEP studies showing the extensive use of the PS approximation with various assumptions about coronal and photospheric source fields. We then run the Wang–Sheeley–Arge (WSA) model over selected Carrington rotations (CRs) to track both the photospheric and \(5~\mbox{R}_{\odot}\) source locations of the forecasted 1 AU SW, allowing us to compare those WSA sources with the PS sources inferred from the WSA \(V\)sw forecast. We compile statistics of the longitude differences (WSA–PS) for all the CRs and discuss the limitations of using the WSA model to validate the PS approximation. Over nearly all of each CR the PS and WSA source longitudes agree to within several degrees. The agreement is poor only in the slow–fast SW interaction regions characterized by high-speed events (HSEs), where the longitude differences can reach several tens of degrees. This result implies that SEP studies should limit use of the PS approximation around HSEs and use magnetic field polarities as an additional check of solar source connections.


Energetic particles Acceleration, magnetic fields Models, coronal mass ejections Low coronal signatures 



SWK was funded by AFOSR Task 2301RDZ4. DAS was an AFRL Summer Space Scholar.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Agueda, N., Klein, K.-L., Vilmer, N., Rodríguez-Gasén, R., Malandraki, O.E., Papaioannou, A., Subirà, M., Sanahuja, B., et al.: 2014, Release timescales of solar energetic particles in the low corona. Astron. Astrophys. 570, A5.  DOI. ADSCrossRefGoogle Scholar
  2. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295.  DOI. ADSCrossRefGoogle Scholar
  3. Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference, AIP Conf. Proc. 1539, 11.  DOI. Google Scholar
  4. Bučík, R., Innes, D.E., Mall, U., Korth, A., Mason, G.M., Gómez-Herrero, R.: 2014, Multi-spacecraft observations of recurrent \({}^{3}\mathrm{He}\)-rich solar energetic particles. Astrophys. J. 786, 71.  DOI. ADSCrossRefGoogle Scholar
  5. Chen, N., Bučík, R., Innes, D.E., Mason, G.M.: 2015, Case studies of multi-day \({}^{3}\mathrm{He}\)-rich solar energetic particle periods. Astron. Astrophys. 580, A16.  DOI. ADSCrossRefGoogle Scholar
  6. Cohen, C.M.S., Mason, G.M., Mewaldt, R.A., Wiedenbeck, M.E.: 2014, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 793, 35.  DOI. ADSCrossRefGoogle Scholar
  7. Dresing, N., Gómez-Herrero, R., Klassen, A., Heber, B., Kartavykh, Y., Dröge, W.: 2012, The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Solar Phys. 281, 281.  DOI. ADSGoogle Scholar
  8. Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., Malandraki, O., Dröge, W., Kartavykh, Y.: 2014, Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27.  DOI. ADSCrossRefGoogle Scholar
  9. Gómez-Herrero, R., Dresing, N., Klassen, A., Heber, B., Lario, D., Agueda, N., Malandraki, O.E., Blanco, J.J., Rodríguez-Pacheco, J., Banjac, S.: 2015, Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55.  DOI. ADSCrossRefGoogle Scholar
  10. Hickman, K.S., Godinez, H.C., Henney, C.J., Arge, C.N.: 2015, Data assimilation in the ADAPT photospheric flux transport model. Solar Phys. 290, 1105.  DOI. ADSCrossRefGoogle Scholar
  11. Jackson, B.V., Hick, P.P., Buffington, A., Yu, H.-S., Bisi, M.M., Tokumaru, M., Zhao, X.: 2015, A determination of the North–South heliospheric magnetic field component from inner corona closed-loop propagation. Astrophys. J. Lett. 803, L1.  DOI. ADSCrossRefGoogle Scholar
  12. Kahler, S.W., Arge, C.N., Akiyama, S., Gopalswamy, N.: 2014, Do solar coronal holes affect the properties of solar energetic particle events? Solar Phys. 289, 657.  DOI. ADSCrossRefGoogle Scholar
  13. Klassen, A., Dresing, N., Gómez-Herrero, R., Heber, B.: 2015, First simultaneous observations of a near-relativistic electron spike event by both STEREO spacecraft. Astron. Astrophys. 580, A115.  DOI. ADSCrossRefGoogle Scholar
  14. Klein, K.-L., Krucker, S., Lointier, G., Kerdraon, A.: 2008, Open magnetic flux tubes in the corona and the transport of solar energetic particles. Astron. Astrophys. 486, 589.  DOI. ADSCrossRefGoogle Scholar
  15. Ko, Y.-K., Tylka, A.J., Ng, C.K., Wang, Y.-M., Dietrich, W.F.: 2013, Source regions of the interplanetary magnetic field and variability in heavy-ion elemental composition in gradual solar energetic particle events. Astrophys. J. 776, 92.  DOI. ADSCrossRefGoogle Scholar
  16. Laitinen, T., Dalla, S., Marsh, M.S.: 2013, Energetic particle cross-field propagation early in a solar event. Astrophys. J. Lett. 773, L29.  DOI. ADSCrossRefGoogle Scholar
  17. Lario, D., Kallenrode, M.-B., Decker, R.B., Roelof, E.C., Krimigis, S.M., Aran, A., Sanahuja, B.: 2006, Radial and longitudinal dependence of solar 4 – 13 MeV and 27 – 37 MeV proton peak intensities and fluences: helios and IMP 8 observations. Astrophys. J. 653, 1531.  DOI. ADSCrossRefGoogle Scholar
  18. Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41.  DOI. ADSCrossRefGoogle Scholar
  19. Lario, D., Raouafi, N.E., Kwon, R.-Y., Zhang, J., Gómez-Herrero, R., Dresing, N., Riley, P.: 2014, The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. Astrophys. J. 797, 8.  DOI. ADSCrossRefGoogle Scholar
  20. Lee, C.O., Arge, C.N., Odstrčil, D., Millward, G., Pizzo, V., Quinn, J.M., Henney, C.J.: 2013, Ensemble modeling of CME propagation. Solar Phys. 285, 349.  DOI. ADSCrossRefGoogle Scholar
  21. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADSCrossRefGoogle Scholar
  22. Li, B., Cairns, I.H., Gosling, J.T., Steward, G., Francis, M., Neudegg, D., Schulte in den Bäumen, H., Player, P.R., Milne, A.R.: 2016, Mapping magnetic field lines between the Sun and Earth. J. Geophys. Res. 121, 925.  DOI CrossRefGoogle Scholar
  23. Linker, J.A., Mikić, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2013, Coronal and heliospheric modeling using flux-evolved maps. In: SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference, AIP Conf. Ser. 1539, 26.  DOI. Google Scholar
  24. Luhmann, J.G., Li, Y., Riley, P., Arge, C.N., Liu, Y., DeToma, G.: 2008, Challenges created by active regions in global models for space weather uses. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) ASP Conf. Proc., Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series 383, Astronomical Society of the Pacific, San Francisco, 133. Google Scholar
  25. Luhmann, J.G., Li, Y., Bercik, D.J., Wang, L., Odstrcil, D.: 2012, Issues in heliospheric field mapping to flare SEP sources, space weather: the space radiation environment. AIP Conf. Proc. 1500, 3.  DOI. ADSCrossRefGoogle Scholar
  26. MacNeice, P.: 2009, Validation of community models: 2. Development of a baseline using the Wang–Sheeley–Arge model. Space Weather 7, S12002.  DOI. ADSGoogle Scholar
  27. MacNeice, P., Elliott, B., Acebal, A.: 2011, Validation of community models: 3. Tracing field lines in heliospheric models. Space Weather 9, S10003.  DOI. ADSCrossRefGoogle Scholar
  28. Manoharan, P., Kim, T., Pogorelov, N.V., Arge, C.N., Manoharan, P.K.: 2015, Modeling solar wind with boundary conditions from interplanetary scintillations. J. Phys. Conf. Ser. 642, 012016.  DOI. ADSCrossRefGoogle Scholar
  29. Miteva, R., Klein, K.-L., Malandraki, O., Dorrian, G.: 2013, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579.  DOI. ADSCrossRefGoogle Scholar
  30. Miteva, R., Klein, K.-L., Kienreich, I., Temmer, M., Veronig, A., Malandraki, O.E.: 2014, Solar energetic particles and associated EIT disturbances in solar cycle 23. Solar Phys. 289, 2601.  DOI. ADSCrossRefGoogle Scholar
  31. Nitta, N.V.: 2012, Magnetic field connection and large scale coronal disturbances in the context of gradual SEP events. In: Physics of the Heliosphere: a 10 Year Retrospective: Proceedings of the 10th Annual International Astrophysics Conference, AIP Conf. Proc. 1436, 259.  DOI. Google Scholar
  32. Nitta, N.V., Mason, G.M., Wang, L., Cohen, C.M.S., Wiedenbeck, M.E.: 2015, Solar sources of 3He-rich solar energetic particle events in solar cycle 24. Astrophys. J. 806, 235.  DOI. ADSCrossRefGoogle Scholar
  33. Nitta, N.V., DeRosa, M.L.: 2008, A comparison of solar open field regions found by type III radio bursts and the potential field source surface model. Astrophys. J. Lett. 673, L207.  DOI. ADSCrossRefGoogle Scholar
  34. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: High coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241.  DOI. ADSCrossRefGoogle Scholar
  35. Nolte, J.T., Krieger, A.S., Roelof, E.C., Gold, R.E.: 1977, High coronal structure of high velocity solar wind stream sources. Solar Phys. 51, 459.  DOI. ADSCrossRefGoogle Scholar
  36. Norquist, D.C.: 2013, Forecast performance assessment of a kinematic and a magnetohydrodynamic solar wind model. Space Weather 11, 17.  DOI. ADSCrossRefGoogle Scholar
  37. Norquist, D.C., Meeks, W.C.: 2010, A comparative verification of forecasts from two operational solar wind models. Space Weather 8, S12005.  DOI. ADSCrossRefGoogle Scholar
  38. Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Solar Phys. 259, 297.  DOI. ADSCrossRefGoogle Scholar
  39. Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008, Metrics for solar wind prediction models: comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001.  DOI. ADSCrossRefGoogle Scholar
  40. Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5.  DOI. ADSCrossRefGoogle Scholar
  41. Park, J., Innes, D.E., Bucik, R., Moon, Y.-J.: 2013, The source regions of solar energetic particles detected by widely separated spacecraft. Astrophys. J. 779, 184.  DOI. ADSCrossRefGoogle Scholar
  42. Park, J., Innes, D.E., Bucik, R., Moon, Y.-J., Kahler, S.W.: 2015, Study of solar energetic particle associations with coronal extreme-ultraviolet waves. Astrophys. J. 808, 3.  DOI. ADSCrossRefGoogle Scholar
  43. Prise, A.J., Harra, L.K., Matthews, S.A., Long, D.M., Aylward, A.D.: 2014, An investigation of the CME of 3 November 2011 and its associated widespread solar energetic particle event. Solar Phys. 289, 1731.  DOI. ADSCrossRefGoogle Scholar
  44. Ragot, B.R.: 2011, Nonlinear multiscale simulation of turbulent flux tubes. Astrophys. J. 740, 119.  DOI. ADSCrossRefGoogle Scholar
  45. Ragot, B.R.: 2012, Nonresonant interaction of charged energetic particles with low-frequency noncompressive turbulence: numerical simulation. Astrophys. J. 758, 89.  DOI. ADSCrossRefGoogle Scholar
  46. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53.  DOI. ADSCrossRefGoogle Scholar
  47. Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267.  DOI. ADSCrossRefGoogle Scholar
  48. Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02.  DOI. Google Scholar
  49. Riley, P., Lionello, R.: 2011, Mapping solar wind streams from the Sun to 1 AU: a comparison of techniques. Solar Phys. 270, 575.  DOI. ADSCrossRefGoogle Scholar
  50. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, \({>}\,25~\mbox{MeV}\) proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ∼ seven years of the STEREO mission. Solar Phys. 289, 3059.  DOI. ADSCrossRefGoogle Scholar
  51. Rouillard, A.P., Odstřcil, D., Sheeley, N.R., Tylka, A., Vourlidas, A., Mason, G., Wu, C.-C., Savani, N.P., Wood, B.E., Ng, C.K., Stenborg, G., Szabo, A., St. Cyr, O.C.: 2011, Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J. 735, 7.  DOI. ADSCrossRefGoogle Scholar
  52. Rouillard, A.P., Sheeley, N.R., Tylka, A., Vourlidas, A., Ng, C.K., Rakowski, C., Cohen, C.M.S., Mewaldt, R.A., Mason, G.M., Reames, D., et al.: 2012, The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44.  DOI. ADSCrossRefGoogle Scholar
  53. Schatten, K.H.: 1972, Current sheet magnetic model for the solar corona. In: Sonnet, C.P., Coleman, P.J., Wilcox, J.M. (eds.): Solar Wind. NASA, Washington 44. Google Scholar
  54. Schulte in den Bäumen, H., Cairns, I.H., Robinson, P.A.: 2012, Nonzero azimuthal magnetic fields at the solar source surface: extraction, model, and implications. J. Geophys. Res. 117, A10104.  DOI. ADSCrossRefGoogle Scholar
  55. Shen, C., Wang, Y., Ye, P., Wang, S.: 2006, Is there any evident effect of coronal holes on gradual solar energetic particle events? Astrophys. J. 639, 510.  DOI. ADSCrossRefGoogle Scholar
  56. Shen, C.-L., Yao, J., Wang, Y.-M., Ye, P.-Z., Zhao, X.-P., Wang, S.: 2010, Influence of coronal holes on CMEs in causing SEP events. Res. Astron. Astrophys. 10, 1049.  DOI. ADSCrossRefGoogle Scholar
  57. Wiedenbeck, M.E., Mason, G.M., Cohen, C.M.S., Nitta, N.V., Gómez-Herrero, R., Haggerty, D.K.: 2013, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54.  DOI. ADSCrossRefGoogle Scholar
  58. Wiedenbeck, M.E., Cohen, C.M.S., Klassen, A., Leske, R.A., Liewer, P.A., Mason, G.M., Nitta, N.: 2015, Constraints on mechanisms for longitudinal spreading of impulsive SEPs from multispacecraft observations of scatter-free events. Proc. 34th ICRC, PoS 106. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  1. 1.Air Force Research LaboratorySpace Vehicles DirectorateKirtland AFBUSA
  2. 2.Utah State UniversityLoganUSA

Personalised recommendations