Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Using the WSA Model to Test the Parker Spiral Approximation for SEP Event Magnetic Connections

  • 376 Accesses

  • 5 Citations

Abstract

In studies of solar energetic (\(E > 10~\mbox{MeV}\)) particle (SEP) events the Parker spiral (PS) field approximation, based only on the measured 1 AU solar wind (SW) speed \(V\)sw, is nearly always used to determine the coronal or photospheric source locations of the 1 AU magnetic fields. There is no objective way to validate that approximation, but here we seek guidelines for optimizing its application. We first review recent SEP studies showing the extensive use of the PS approximation with various assumptions about coronal and photospheric source fields. We then run the Wang–Sheeley–Arge (WSA) model over selected Carrington rotations (CRs) to track both the photospheric and \(5~\mbox{R}_{\odot}\) source locations of the forecasted 1 AU SW, allowing us to compare those WSA sources with the PS sources inferred from the WSA \(V\)sw forecast. We compile statistics of the longitude differences (WSA–PS) for all the CRs and discuss the limitations of using the WSA model to validate the PS approximation. Over nearly all of each CR the PS and WSA source longitudes agree to within several degrees. The agreement is poor only in the slow–fast SW interaction regions characterized by high-speed events (HSEs), where the longitude differences can reach several tens of degrees. This result implies that SEP studies should limit use of the PS approximation around HSEs and use magnetic field polarities as an additional check of solar source connections.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Agueda, N., Klein, K.-L., Vilmer, N., Rodríguez-Gasén, R., Malandraki, O.E., Papaioannou, A., Subirà, M., Sanahuja, B., et al.: 2014, Release timescales of solar energetic particles in the low corona. Astron. Astrophys. 570, A5. DOI .

  2. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI .

  3. Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference, AIP Conf. Proc. 1539, 11. DOI .

  4. Bučík, R., Innes, D.E., Mall, U., Korth, A., Mason, G.M., Gómez-Herrero, R.: 2014, Multi-spacecraft observations of recurrent \({}^{3}\mathrm{He}\)-rich solar energetic particles. Astrophys. J. 786, 71. DOI .

  5. Chen, N., Bučík, R., Innes, D.E., Mason, G.M.: 2015, Case studies of multi-day \({}^{3}\mathrm{He}\)-rich solar energetic particle periods. Astron. Astrophys. 580, A16. DOI .

  6. Cohen, C.M.S., Mason, G.M., Mewaldt, R.A., Wiedenbeck, M.E.: 2014, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 793, 35. DOI .

  7. Dresing, N., Gómez-Herrero, R., Klassen, A., Heber, B., Kartavykh, Y., Dröge, W.: 2012, The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Solar Phys. 281, 281. DOI .

  8. Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., Malandraki, O., Dröge, W., Kartavykh, Y.: 2014, Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27. DOI .

  9. Gómez-Herrero, R., Dresing, N., Klassen, A., Heber, B., Lario, D., Agueda, N., Malandraki, O.E., Blanco, J.J., Rodríguez-Pacheco, J., Banjac, S.: 2015, Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55. DOI .

  10. Hickman, K.S., Godinez, H.C., Henney, C.J., Arge, C.N.: 2015, Data assimilation in the ADAPT photospheric flux transport model. Solar Phys. 290, 1105. DOI .

  11. Jackson, B.V., Hick, P.P., Buffington, A., Yu, H.-S., Bisi, M.M., Tokumaru, M., Zhao, X.: 2015, A determination of the North–South heliospheric magnetic field component from inner corona closed-loop propagation. Astrophys. J. Lett. 803, L1. DOI .

  12. Kahler, S.W., Arge, C.N., Akiyama, S., Gopalswamy, N.: 2014, Do solar coronal holes affect the properties of solar energetic particle events? Solar Phys. 289, 657. DOI .

  13. Klassen, A., Dresing, N., Gómez-Herrero, R., Heber, B.: 2015, First simultaneous observations of a near-relativistic electron spike event by both STEREO spacecraft. Astron. Astrophys. 580, A115. DOI .

  14. Klein, K.-L., Krucker, S., Lointier, G., Kerdraon, A.: 2008, Open magnetic flux tubes in the corona and the transport of solar energetic particles. Astron. Astrophys. 486, 589. DOI .

  15. Ko, Y.-K., Tylka, A.J., Ng, C.K., Wang, Y.-M., Dietrich, W.F.: 2013, Source regions of the interplanetary magnetic field and variability in heavy-ion elemental composition in gradual solar energetic particle events. Astrophys. J. 776, 92. DOI .

  16. Laitinen, T., Dalla, S., Marsh, M.S.: 2013, Energetic particle cross-field propagation early in a solar event. Astrophys. J. Lett. 773, L29. DOI .

  17. Lario, D., Kallenrode, M.-B., Decker, R.B., Roelof, E.C., Krimigis, S.M., Aran, A., Sanahuja, B.: 2006, Radial and longitudinal dependence of solar 4 – 13 MeV and 27 – 37 MeV proton peak intensities and fluences: helios and IMP 8 observations. Astrophys. J. 653, 1531. DOI .

  18. Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41. DOI .

  19. Lario, D., Raouafi, N.E., Kwon, R.-Y., Zhang, J., Gómez-Herrero, R., Dresing, N., Riley, P.: 2014, The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. Astrophys. J. 797, 8. DOI .

  20. Lee, C.O., Arge, C.N., Odstrčil, D., Millward, G., Pizzo, V., Quinn, J.M., Henney, C.J.: 2013, Ensemble modeling of CME propagation. Solar Phys. 285, 349. DOI .

  21. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI .

  22. Li, B., Cairns, I.H., Gosling, J.T., Steward, G., Francis, M., Neudegg, D., Schulte in den Bäumen, H., Player, P.R., Milne, A.R.: 2016, Mapping magnetic field lines between the Sun and Earth. J. Geophys. Res. 121, 925. DOI

  23. Linker, J.A., Mikić, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2013, Coronal and heliospheric modeling using flux-evolved maps. In: SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference, AIP Conf. Ser. 1539, 26. DOI .

  24. Luhmann, J.G., Li, Y., Riley, P., Arge, C.N., Liu, Y., DeToma, G.: 2008, Challenges created by active regions in global models for space weather uses. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) ASP Conf. Proc., Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series 383, Astronomical Society of the Pacific, San Francisco, 133.

  25. Luhmann, J.G., Li, Y., Bercik, D.J., Wang, L., Odstrcil, D.: 2012, Issues in heliospheric field mapping to flare SEP sources, space weather: the space radiation environment. AIP Conf. Proc. 1500, 3. DOI .

  26. MacNeice, P.: 2009, Validation of community models: 2. Development of a baseline using the Wang–Sheeley–Arge model. Space Weather 7, S12002. DOI .

  27. MacNeice, P., Elliott, B., Acebal, A.: 2011, Validation of community models: 3. Tracing field lines in heliospheric models. Space Weather 9, S10003. DOI .

  28. Manoharan, P., Kim, T., Pogorelov, N.V., Arge, C.N., Manoharan, P.K.: 2015, Modeling solar wind with boundary conditions from interplanetary scintillations. J. Phys. Conf. Ser. 642, 012016. DOI .

  29. Miteva, R., Klein, K.-L., Malandraki, O., Dorrian, G.: 2013, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579. DOI .

  30. Miteva, R., Klein, K.-L., Kienreich, I., Temmer, M., Veronig, A., Malandraki, O.E.: 2014, Solar energetic particles and associated EIT disturbances in solar cycle 23. Solar Phys. 289, 2601. DOI .

  31. Nitta, N.V.: 2012, Magnetic field connection and large scale coronal disturbances in the context of gradual SEP events. In: Physics of the Heliosphere: a 10 Year Retrospective: Proceedings of the 10th Annual International Astrophysics Conference, AIP Conf. Proc. 1436, 259. DOI .

  32. Nitta, N.V., Mason, G.M., Wang, L., Cohen, C.M.S., Wiedenbeck, M.E.: 2015, Solar sources of 3He-rich solar energetic particle events in solar cycle 24. Astrophys. J. 806, 235. DOI .

  33. Nitta, N.V., DeRosa, M.L.: 2008, A comparison of solar open field regions found by type III radio bursts and the potential field source surface model. Astrophys. J. Lett. 673, L207. DOI .

  34. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: High coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241. DOI .

  35. Nolte, J.T., Krieger, A.S., Roelof, E.C., Gold, R.E.: 1977, High coronal structure of high velocity solar wind stream sources. Solar Phys. 51, 459. DOI .

  36. Norquist, D.C.: 2013, Forecast performance assessment of a kinematic and a magnetohydrodynamic solar wind model. Space Weather 11, 17. DOI .

  37. Norquist, D.C., Meeks, W.C.: 2010, A comparative verification of forecasts from two operational solar wind models. Space Weather 8, S12005. DOI .

  38. Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Solar Phys. 259, 297. DOI .

  39. Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008, Metrics for solar wind prediction models: comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001. DOI .

  40. Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5. DOI .

  41. Park, J., Innes, D.E., Bucik, R., Moon, Y.-J.: 2013, The source regions of solar energetic particles detected by widely separated spacecraft. Astrophys. J. 779, 184. DOI .

  42. Park, J., Innes, D.E., Bucik, R., Moon, Y.-J., Kahler, S.W.: 2015, Study of solar energetic particle associations with coronal extreme-ultraviolet waves. Astrophys. J. 808, 3. DOI .

  43. Prise, A.J., Harra, L.K., Matthews, S.A., Long, D.M., Aylward, A.D.: 2014, An investigation of the CME of 3 November 2011 and its associated widespread solar energetic particle event. Solar Phys. 289, 1731. DOI .

  44. Ragot, B.R.: 2011, Nonlinear multiscale simulation of turbulent flux tubes. Astrophys. J. 740, 119. DOI .

  45. Ragot, B.R.: 2012, Nonresonant interaction of charged energetic particles with low-frequency noncompressive turbulence: numerical simulation. Astrophys. J. 758, 89. DOI .

  46. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI .

  47. Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267. DOI .

  48. Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02. DOI .

  49. Riley, P., Lionello, R.: 2011, Mapping solar wind streams from the Sun to 1 AU: a comparison of techniques. Solar Phys. 270, 575. DOI .

  50. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, \({>}\,25~\mbox{MeV}\) proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ∼ seven years of the STEREO mission. Solar Phys. 289, 3059. DOI .

  51. Rouillard, A.P., Odstřcil, D., Sheeley, N.R., Tylka, A., Vourlidas, A., Mason, G., Wu, C.-C., Savani, N.P., Wood, B.E., Ng, C.K., Stenborg, G., Szabo, A., St. Cyr, O.C.: 2011, Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J. 735, 7. DOI .

  52. Rouillard, A.P., Sheeley, N.R., Tylka, A., Vourlidas, A., Ng, C.K., Rakowski, C., Cohen, C.M.S., Mewaldt, R.A., Mason, G.M., Reames, D., et al.: 2012, The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44. DOI .

  53. Schatten, K.H.: 1972, Current sheet magnetic model for the solar corona. In: Sonnet, C.P., Coleman, P.J., Wilcox, J.M. (eds.): Solar Wind. NASA, Washington 44.

  54. Schulte in den Bäumen, H., Cairns, I.H., Robinson, P.A.: 2012, Nonzero azimuthal magnetic fields at the solar source surface: extraction, model, and implications. J. Geophys. Res. 117, A10104. DOI .

  55. Shen, C., Wang, Y., Ye, P., Wang, S.: 2006, Is there any evident effect of coronal holes on gradual solar energetic particle events? Astrophys. J. 639, 510. DOI .

  56. Shen, C.-L., Yao, J., Wang, Y.-M., Ye, P.-Z., Zhao, X.-P., Wang, S.: 2010, Influence of coronal holes on CMEs in causing SEP events. Res. Astron. Astrophys. 10, 1049. DOI .

  57. Wiedenbeck, M.E., Mason, G.M., Cohen, C.M.S., Nitta, N.V., Gómez-Herrero, R., Haggerty, D.K.: 2013, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54. DOI .

  58. Wiedenbeck, M.E., Cohen, C.M.S., Klassen, A., Leske, R.A., Liewer, P.A., Mason, G.M., Nitta, N.: 2015, Constraints on mechanisms for longitudinal spreading of impulsive SEPs from multispacecraft observations of scatter-free events. Proc. 34th ICRC, PoS 106.

Download references

Acknowledgements

SWK was funded by AFOSR Task 2301RDZ4. DAS was an AFRL Summer Space Scholar.

Author information

Correspondence to S. W. Kahler.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahler, S.W., Arge, C.N. & Smith, D.A. Using the WSA Model to Test the Parker Spiral Approximation for SEP Event Magnetic Connections. Sol Phys 291, 1829–1852 (2016). https://doi.org/10.1007/s11207-016-0934-x

Download citation

Keywords

  • Energetic particles
  • Acceleration, magnetic fields
  • Models, coronal mass ejections
  • Low coronal signatures