Advertisement

Solar Physics

, Volume 291, Issue 6, pp 1665–1679 | Cite as

Measuring Solar Doppler Velocities in the He ii 30.38 nm Emission Using the EUV Variability Experiment (EVE)

  • P. C. ChamberlinEmail author
Article

Abstract

The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradiance as a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He ii 30.38 nm emission at a velocity of almost \(120~\mbox{km}\,\mbox{s}^{-1}\) along the line-of-sight.

Keywords

Flares, dynamics Flares, spectrum Instrumentation and data management Solar irradiance Spectrum, ultraviolet 

Notes

Acknowledgements

This work is supported through Solar Dynamics Observatory project funding at NASA’s Goddard Space Flight Center. The author would like to acknowledge the SDO and EVE operations teams that provided the maneuvers and calibration support necessary for this analysis.

Supplementary material

11207_2016_931_MOESM1_ESM.mpeg (7 mb)
(MPEG 7.0 MB)

References

  1. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573.  DOI. ADSCrossRefGoogle Scholar
  2. Chamberlin, P.C., Milligan, R.O., Woods, T.N.: 2012, Thermal evolution and radiative output of solar flares observed by the EUV Variability Experiment (EVE). Solar Phys. 279, 23.  DOI. ADSCrossRefGoogle Scholar
  3. Crotser, D.A., Woods, T.N., Eparvier, F.G., Triplett, M.A., Woodraska, D.L.: 2007, SDO-EVE EUV spectrograph optical design and performance. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6689.  DOI.
  4. Hock, R.A.: 2012, The Role of Solar Flares in the Variability of the Extreme Ultraviolet Solar Spectral Irradiance. Ph.D. thesis, University of Colorado at Boulder. Google Scholar
  5. Hudson, H.S., Woods, T.N., Chamberlin, P.C., Fletcher, L., Del Zanna, G., Didkovsky, L., Labrosse, N., Graham, D.: 2011, The EVE Doppler sensitivity and flare observations. Solar Phys. 273, 69.  DOI. ADSCrossRefGoogle Scholar
  6. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2011, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys., 172.  DOI.
  7. Lollo, A., Withers, P., Fallows, K., Girazian, Z., Matta, M., Chamberlin, P.C.: 2012, Numerical simulations of the ionosphere of Mars during a solar flare. J. Geophys. Res. 117, 5314.  DOI. CrossRefGoogle Scholar
  8. Milligan, R.O., Chamberlin, P.C., Hudson, H.S., Woods, T.N., Mathioudakis, M., Fletcher, L., Kowalski, A.F., Keenan, F.P.: 2012, Observations of enhanced extreme ultraviolet continua during an X-class solar flare using SDO/EVE. Astrophys. J. Lett. 748, L14.  DOI. ADSCrossRefGoogle Scholar
  9. Milligan, R.O., Dennis, B.R.: 2009, Velocity characteristics of evaporated plasma using hinode/EUV imaging spectrometer. Astrophys. J. 699, 968.  DOI. ADSCrossRefGoogle Scholar
  10. Milligan, R.O., Kerr, G.S., Dennis, B.R., Hudson, H.S., Fletcher, L., Allred, J.C., Chamberlin, P.C., Ireland, J., Mathioudakis, M., Keenan, F.P.: 2014, The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations. Astrophys. J. 793, 70.  DOI. ADSCrossRefGoogle Scholar
  11. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3.  DOI. ADSCrossRefGoogle Scholar
  12. Peterson, W.K., Brain, D.A., Mitchell, D.L., Bailey, S.M., Chamberlin, P.C.: 2013, Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth. J. Geophys. Res. 118, 7338.  DOI. CrossRefGoogle Scholar
  13. Peterson, W.K., Woods, T.N., Fontenla, J.M., Richards, P.G., Chamberlin, P.C., Solomon, S.C., Tobiska, W.K., Warren, H.P.: 2012, Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations. J. Geophys. Res. 117, A05320.  DOI. ADSGoogle Scholar
  14. Qian, L., Burns, A.G., Chamberlin, P.C., Solomon, S.C.: 2010, Flare location on the solar disk: modeling the thermosphere and ionosphere response. J. Geophys. Res. 115, 9311.  DOI. CrossRefGoogle Scholar
  15. Qian, L., Burns, A.G., Chamberlin, P.C., Solomon, S.C.: 2011, Variability of thermosphere and ionosphere responses to solar flares. J. Geophys. Res. 116, 10309.  DOI. CrossRefGoogle Scholar
  16. Ryan, D.F., Chamberlin, P.C., Milligan, R.O., Gallagher, P.T.: 2013, Decay-phase cooling and inferred heating of M- and X-class solar flares. Astrophys. J. 778, 68.  DOI. ADSCrossRefGoogle Scholar
  17. Sternovsky, Z., Chamberlin, P., Horanyi, M., Robertson, S., Wang, X.: 2008, Variability of the lunar photoelectron sheath and dust mobility due to solar activity. J. Geophys. Res. 113, 10104.  DOI. CrossRefGoogle Scholar
  18. Withers, P.: 2009, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277.  DOI. ADSCrossRefGoogle Scholar
  19. Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275, 115.  DOI. ADSCrossRefGoogle Scholar
  20. Woods, T.N., Hock, R., Eparvier, F., Jones, A.R., Chamberlin, P.C., Klimchuk, J.A., Didkovsky, L., Judge, D., Mariska, J., Warren, H., Schrijver, C.J., Webb, D.F., Bailey, S., Tobiska, W.K.: 2011, New solar extreme-ultraviolet irradiance observations during flares. Astrophys. J. 739, 59.  DOI. ADSCrossRefGoogle Scholar
  21. Xu, S., Liemohn, M.W., Peterson, W.K., Fontenla, J., Chamberlin, P.: 2015, Comparison of different solar irradiance models for the superthermal electron transport model for Mars. Planet. Space Sci. 119, 62.  DOI. ADSCrossRefGoogle Scholar
  22. Young, P.R., Muglach, K.: 2014, Solar dynamics observatory and hinode observations of a blowout jet in a coronal hole. Solar Phys. 289, 3313.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  1. 1.Solar Physics Laboratory, Heliophysics DivisionNASA Goddard Space Flight CenterGreenbeltUnited States

Personalised recommendations