Solar Physics

, Volume 291, Issue 5, pp 1323–1340 | Cite as

Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity

  • M. Díaz Alfaro
  • F. Pérez Hernández
  • I. González Hernández
  • T. Hartlep


The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase-sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. (Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at \(0.7 R_{\odot }\). The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295–BR2307 and BR2387–BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum.


Helioseismology Solar activity Tachocline 



We thank C. Lindsey and D. Braun for making available a large part of the far-side code used here and adapted for use with foci well below the surface. Part of this research was supported by the Spanish National Research Plan under project AYA2010-17803. This work uses data obtained by the Global Oscillation Network Group (GONG) program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. We thankfully acknowledge the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Española de Supercomputación), as well as the computer resources used: the LaPalma Supercomputer, located at the Instituto de Astrofísica de Canarias, as well as the contribution of Teide High-Performance Computing facilities to the results of this research. TeideHPC facilities are provided by the Instituto Tecnológico y de Energías Renovables (ITER, SA). URL: .


  1. Antia, H.M., Basu, S.: 2011, Revisiting the solar tachocline: Average properties and temporal variations. Astrophys. J. Lett. 735, L45.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Baldner, C.S., Basu, S.: 2008, Solar cycle related changes at the base of the convection zone. Astrophys. J. 686, 1349.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Basu, S.: 1997, Seismology of the base of the solar convection zone. Mon. Not. Roy. Astron. Soc. 288, 572. ADS. ADSCrossRefGoogle Scholar
  4. Basu, S., Antia, H.M.: 2003, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Braun, D.C.: 2014, Helioseismic holography of an artificial submerged sound speed perturbation and implications for the detection of pre-emergence signatures of active regions. Solar Phys. 289, 459.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Braun, D.C., Lindsey, C.: 2000, Phase-sensitive holography of solar activity. Solar Phys. 192, 307.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Braun, D.C., Lindsey, C.: 2001, Seismic imaging of the far hemisphere of the Sun. Astrophys. J. Lett. 560, L189.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Charbonneau, P., MacGregor, K.B.: 1997, Solar interface dynamos. II. Linear, kinematic models in spherical geometry. Astrophys. J. 486, 502. ADS. ADSCrossRefGoogle Scholar
  9. Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., Tomczyk, S.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Chou, D.-Y., Serebryanskiy, A.: 2002, Searching for the signature of the magnetic fields at the base of the solar convection zone with solar cycle variations of p-mode travel time. Astrophys. J. Lett. 578, L157.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Chou, D.-Y., Serebryanskiy, A.: 2005, In search of the solar cycle variations of p-mode frequencies generated by perturbations in the solar interior. Astrophys. J. 624, 420.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Corbard, T., Blanc-Féraud, L., Berthomieu, G., Provost, J.: 1999, Non linear regularization for helioseismic inversions. Application for the study of the solar tachocline. Astron. Astrophys. 344, 696. ADS. ADSGoogle Scholar
  14. Díaz Alfaro, M., Pérez Hernández, F., González Hernández, I., Hartlep, T.: 2013, Active region position effects on seismic holography maps. In: Jain, K., Tripathy, S.C., Hill, F., Leibacher, J.W., Pevtsov, A.A. (eds.) Fifty Years of Seismology of the Sun and Stars, ASP Conf. Ser. 478, 317. ADS. Google Scholar
  15. Eff-Darwich, A., Korzennik, S.G., Jiménez-Reyes, S.J., Pérez Hernández, F.: 2002, An upper limit on the temporal variations of the solar interior stratification. Astrophys. J. 580, 574.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Elliott, J.R., Gough, D.O.: 1999, Calibration of the thickness of the solar tachocline. Astrophys. J. 516, 475.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Fontenla, J.M., Quémerais, E., González Hernández, I., Lindsey, C., Haberreiter, M.: 2009, Solar irradiance forecast and far-side imaging. Adv. Space Res. 44, 457.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. González Hernández, I., Hill, F., Lindsey, C.: 2007, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. González Hernández, I., Scherrer, P., Hill, F.: 2009, A new way to infer variations of the seismic solar radius. Astrophys. J. Lett. 691, L87.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. González Hernández, I., Lindsey, C., Braun, D.C., Bogart, R.S., Scherrer, P.H., Hill, F.: 2013, Far-side helioseismic maps: The next generation. J. Phys. Conf. Ser. 440, 012029.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. González Hernández, I., Díaz Alfaro, M., Jain, K., Tobiska, W.K., Braun, D.C., Hill, F., Pérez Hernández, F.: 2014, A full-Sun magnetic index from helioseismology inferences. Solar Phys. 289, 503.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Gough, D.O., Kosovichev, A.G., Toomre, J., Anderson, E., Antia, H.M., Basu, S., Chaboyer, B., Chitre, S.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Eff-Darwich, A., Elliott, J.R., Giles, P.M., Goode, P.R., Guzik, J.A., Harvey, J.W., Hill, F., Leibacher, J.W., Monteiro, M.J.P.F.G., Richard, O., Sekii, T., Shibahashi, H., Takata, M., Thompson, M.J., Vauclair, S., Vorontsov, S.V.: 1996, The seismic structure of the Sun. Science 272, 1296.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Hartlep, T., Zhao, J., Mansour, N.N., Kosovichev, A.G.: 2008, Validating time-distance far-side imaging of solar active regions through numerical simulations. Astrophys. J. 689, 1373.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Hartlep, T., Kosovichev, A.G., Zhao, J., Mansour, N.N.: 2011, Signatures of emerging subsurface structures in acoustic power maps of the Sun. Solar Phys. 268, 321.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Hartlep, T., Zhao, J., Kosovichev, A.G., Mansour, N.N.: 2013, Solar wave-field simulation for testing prospects of helioseismic measurements of deep meridional flows. Astrophys. J. 762, 132.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Kholikov, S., Hill, F.: 2008, Acoustic radius measurements from MDI and GONG. Solar Phys. 251, 157.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Kosovichev, A.G.: 1996, Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone. Astrophys. J. Lett. 469, L61.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Kosovichev, A.G., Duvall, T.L.. Jr., Scherrer, P.H.: 2000, Time-distance inversion methods and results (Invited review). Solar Phys. 192, 159.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Kosovichev, A.G., Schou, J., Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Aloise, J., Bacon, L., Burnette, A., de Forest, C., Giles, P.M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S.D., Basu, S., Christensen-Dalsgaard, J., Dappen, W., Rhodes, E.J. Jr., Duvall, T.L. Jr., Howe, R., Thompson, M.J., Gough, D.O., Sekii, T., Toomre, J., Tarbell, T.D., Title, A.M., Mathur, D., Morrison, M., Saba, J.L.R., Wolfson, C.J., Zayer, I., Milford, P.N.: 1997, Structure and rotation of the solar interior: Initial results from the MDI medium-\(\ell\) program. Solar Phys. 170, 43.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Lefebvre, S., Kosovichev, A.G.: 2005, Changes in the subsurface stratification of the Sun with the 11-year activity cycle. Astrophys. J. Lett. 633, L149.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Lindsey, C., Braun, D.C.: 1997, Helioseismic holography. Astrophys. J. 485, 895.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Lindsey, C., Braun, D.C.: 1998, Acoustic signatures of subphotospheric structure underlying sunspots. Astrophys. J. Lett. 509, L129.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lindsey, C., Braun, D.C.: 2000a, Basic principles of solar acoustic holography (Invited review). Solar Phys. 192, 261.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Lindsey, C., Braun, D.C.: 2000b, Seismic images of the far side of the Sun. Science 287, 1799.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lindsey, C., Braun, D.C.: 2005, The acoustic showerglass. I. Seismic diagnostics of photospheric magnetic fields. Astrophys. J. 620, 1107.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. MacDonald, G.A., Henney, C.J., Díaz Alfaro, M., González Hernández, I., Arge, C.N., Lindsey, C., McAteer, R.T.J.: 2015, Active region morphologies selected from near-side helioseismic data. Astrophys. J. 807, 21.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Parker, E.N.: 1993, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Pérez Hernández, F., González Hernández, I.: 2010, Green’s functions for far-side seismic images: A polar-expansion approach. Astrophys. J. 711, 853.  DOI. ADS. CrossRefGoogle Scholar
  40. Serebryanskiy, A., Chou, D.-Y.: 2005, Comparison of solar cycle variations of solar p-mode frequencies from GONG and MDI. Astrophys. J. 633, 1187.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Sun, M.-T., Chou, D.-Y., TON Team: 2002, The inversion problem of phase travel time perturbations in acoustic imaging. Solar Phys. 209, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. 45, 635.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Zhao, J., Hartlep, T., Kosovichev, A.G., Mansour, N.N.: 2009, Imaging the solar tachocline by time-distance helioseismology. Astrophys. J. 702, 1150.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  2. 2.Departamento de AstrofísicaUniversidad de La LagunaLa Laguna, TenerifeSpain
  3. 3.National Solar ObservatoryTucsonUSA
  4. 4.Bay Area Environmental Research InstituteNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations