Solar Physics

, Volume 291, Issue 5, pp 1447–1481 | Cite as

Extreme Geomagnetic Storms – 1868 – 2010

  • S. Vennerstrom
  • L. Lefevre
  • M. Dumbović
  • N. Crosby
  • O. Malandraki
  • I. Patsou
  • F. Clette
  • A. Veronig
  • B. Vršnak
  • K. Leer
  • T. Moretto


We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 – 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 – 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence and confirm previous findings that geomagnetic storms tend to occur less frequently near solstices and that this tendency increases with storm intensity. However, we find that the semiannual variation depends on both the solar wind source and the storm level. Storms associated with weak SSC do not show any semiannual variation, in contrast to weak storms without SSC.


Geomagnetic storms Extreme events Historic data 



The results presented in this article use several data sets kindly provided by the listed contributors: The Dcx index was provided by the University of Oulu, Finland, at . The Kp index was provided GeoForschungs Zentrum (GFZ) in Potsdam. The geomagnetic observatory hourly values were obtained from the WDCC1 for Geomagnetism in Edinburgh, which in turn obtained the data from the world-wide network of magnetometers. The OMNI data were provided from the GSFC/SPDF OMNIWeb interface at . The SSC lists were obtained from the International Service of Geomagnetic Indices (ISGI) and the National Geophysical Data Center (NGDC). The GLE-event data was provided by the NMDB project ( ), which in turn obtained the data from the world-wide network of neutron monitors.

The work has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement n. 263252 [COMESEP]. ESP figures are based on the ESA SEPEM reference proton dataset and software developed under the COMESEP project. M. Dumbović and B. Vršnak furthermore acknowledge financial support by the Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”.

Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


  1. Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121. ADSCrossRefGoogle Scholar
  2. Araki, T., Funato, K., Igucgi, T., Kamei, T.: 1993, Direct detection of solar wind magnetic pressure effect on ground magnetic field. Geophys. Res. Lett. 20, 775. ADSCrossRefGoogle Scholar
  3. Bartels, J.: 1932, Terrestrial-magnetic activity and its relation to solar phenomena. Terr. Magn. Atmos. Electr. 37, 1. CrossRefMATHGoogle Scholar
  4. Bell, J.T., Gussenhoven, M.S., Mullen, E.G.: 1997, Super storms. J. Geophys. Res. 102(A7), 14189. ADSCrossRefGoogle Scholar
  5. Beeck, J., Sanderson, T.R.: 1989, Mean free path of low-energy protons upstream of selected interplanetary shocks. J. Geophys. Res. 94, 8769. ADSCrossRefGoogle Scholar
  6. Bohlin, J.D.: 1977, Extreme-ultraviolet observations of coronal holes. Solar Phys. 51, 377. ADSCrossRefGoogle Scholar
  7. Bryant, D.A., Cline, T.L., Desai, U.D., McDonald, F.B.: 1962, Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961. J. Geophys. Res. 67, 4983. ADSCrossRefGoogle Scholar
  8. Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. ADSCrossRefGoogle Scholar
  9. Cane, H.V.: 1985, The evolution of interplanetary shocks. J. Geophys. Res. 90, 191. ADSCrossRefGoogle Scholar
  10. Cane, H.V.: 1988, The large-scale structure of flare associated interplanetary shocks. J. Geophys. Res. 93, 1. ADSCrossRefGoogle Scholar
  11. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93(1/2), 55. ADSCrossRefGoogle Scholar
  12. Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, A4.  DOI. Google Scholar
  13. Cane, H.V., Richardson, I.G., Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101, 21561.  DOI. ADSCrossRefGoogle Scholar
  14. Cane, H.V., Richardson, I.G., Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997 – 2006: their composition and associations. J. Geophys. Res. 115, 8101. CrossRefGoogle Scholar
  15. Chilingarian, A., Bostanjyan, N.: 2010, On the relation of the Forbush decreases detected by ASEC monitors during the 23rd solar activity cycle with ICME parameters. Adv. Space Res. 45, 614. ADSCrossRefGoogle Scholar
  16. Cliver, E.W., Ling, A.G., Wise, J.E., Lanzerotti, L.J.: 1999, A prediction of geomagnetic activity for solar cycle 23. J. Geophys. Res. 104, 6871. ADSCrossRefGoogle Scholar
  17. Cliver, E.W., Kamide, Y., Ling, A.G.: 2002, The semiannual variation of geomagnetic activity: phases and profiles for 130 years. J. Atmos. Solar-Terr. Phys. 64, 47. ADSCrossRefGoogle Scholar
  18. Cohen, C.M.S.: 2006, Observations of energetic storm particles: an overview, solar eruptions and energetic particles. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophysical Monograph Series 165, 275. CrossRefGoogle Scholar
  19. Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N.: 1991, On cosmic-ray cut-off terminology. Nuovo Cimento C 14, 213. ADSCrossRefGoogle Scholar
  20. Cortie, A.L.: 1912, Sunspots and terrestrial magnetic phenomena 1898 – 1911: the cause of the annual variation in magnetic disturbances. Mon. Not. Roy. Astron. Soc. 73, 52. ADSCrossRefGoogle Scholar
  21. Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933. ADSCrossRefGoogle Scholar
  22. Crooker, N.U., Cliver, E.W., Tsurutani, B.T.: 1992, The semiannual variation of great geomagnetic storms and the post-shock Russell–McPherron effect preceding coronal mass ejecta. Geophys. Res. Lett. 19, 429. ADSCrossRefGoogle Scholar
  23. Crosby, N.B., Heynderickx, D., Jiggens, P., Aran, A., Sanahuja, B., Truscott, P., Lei, F., Jacobs, J., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2015, SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather 13.  DOI.
  24. Dungey, J.R.: 1961, Interplanetary magnetic fields and auroral zones. Phys. Rev. Lett. 6, 47. ADSCrossRefGoogle Scholar
  25. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290(3), 841.  DOI. ADSCrossRefGoogle Scholar
  26. Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91.  DOI. ADSCrossRefGoogle Scholar
  27. Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28.  DOI. ADSCrossRefGoogle Scholar
  28. Echer, E., Gonzales, W.D., Tsurutani, B.T.: 2008, Interplanetary conditions leading to superintense geomagnetic storms (\(\mathrm{Dst} <-250~\mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 35, L06S03.  DOI. CrossRefGoogle Scholar
  29. Feldstein, Y.I., Grafe, A., Gromova, L.I., Popov, V.A.: 1997, Auroral electrojets during geomagnetic storms. J. Geophys. Res. 102, 14223. ADSCrossRefGoogle Scholar
  30. Feynman, J., Crooker, N.U.: 1978, The solar wind at the turn of the century. Nature 275, 626. ADSCrossRefGoogle Scholar
  31. Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108. ADSCrossRefGoogle Scholar
  32. Gonzalez, A.L.C., Gonzales, W.D., Dutra, S.L.G., Tsurutani, B.T.: 1993, Periodic variations in geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98, 9215. ADSCrossRefGoogle Scholar
  33. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. ADSCrossRefGoogle Scholar
  34. Gonzalez, W.D., Tsurutani, B.T., Lepping, R.P., Schwenn, R.: 2002, Interplanetary phenomena associated with very intense geomagnetic storms. J. Atmos. Solar-Terr. Phys. 64, 173. ADSCrossRefGoogle Scholar
  35. Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst}<-100~\mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 34, L06101.  DOI. ADSCrossRefGoogle Scholar
  36. Gonzalez, W.D., Echer, E., Tsurutani, B.T., Gonzales, A., Dal Lago, A.: 2011a, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69. ADSCrossRefGoogle Scholar
  37. Gonzalez, W.D., Echer, E., Clua de Gonzales, A.L., Tsurutani, B.T., Lakhina, G.S.: 2011b, Extreme geomagnetic storms, recent Gleissberg cycles and space era – superintense storms. J. Atmos. Solar-Terr. Phys. 73, 1447. ADSCrossRefGoogle Scholar
  38. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901. ADSCrossRefGoogle Scholar
  39. Huttunen-Heikinmkaa, K., Valtonen, E.: 2009, Interplanetary fast forward shocks and energetic storm particle events above 1.5 MeV. Ann. Geophys. 27, 767. ADSCrossRefGoogle Scholar
  40. Kallenrode, M.-B.: 1995, Particle acceleration at interplanetary shocks – observations at a few tens of keVs some tens of MeV. Adv. Space Res. 15(8 – 9), 375. ADSCrossRefGoogle Scholar
  41. Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., Masuda, S.: 1998, Two step development of geomagnetic storms. J. Geophys. Res. 103, 6917. ADSCrossRefGoogle Scholar
  42. Kan, J.R., Lee, L.C.: 1979, Energy coupling and the solar wind dynamo. Geophys. Res. Lett. 6, 577. ADSCrossRefGoogle Scholar
  43. Karinen, A., Mursula, K.: 2005, A new reconstruction of the Dst index for 1932 – 2002. Ann. Geophys. 23, 475. ADSCrossRefGoogle Scholar
  44. Klecker, B., Scholer, M., Hovestadt, D., Gloeckler, G., Ipavich, F.M.: 1981, Spectral and compositional variations of low energy ions during an energetic storm particle event. Astrophys. J. 251, 393. ADSCrossRefGoogle Scholar
  45. Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38. ADSCrossRefGoogle Scholar
  46. Léfevre, L., Vennerstrøm, S., Dumbović, M., Vršnak, B., Sudar, D., Artlt, R., Clette, F., Crosby, N.: 2016, Detailed analysis of solar data related to historical extreme geomagnetic storms: 1868 – 2010. Solar Phys. In this issue.  DOI. Google Scholar
  47. Legrand, J.P., Simon, P.A.: 1981, Ten cycles of solar and geomagnetic activity. Solar Phys. 70, 173. ADSCrossRefGoogle Scholar
  48. Lockwood, M., Rouillard, A.P., Finch, I.D.: 2009, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937. ADSCrossRefGoogle Scholar
  49. Mäkelä, P., Gopalswamy, N., Akiyama, S., Xie, H., Yashiro, S.: 2011, Energetic storm particle events in coronal mass ejection-driven shocks. J. Geophys. Res. 116, A08101.  DOI. ADSCrossRefGoogle Scholar
  50. Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, October/November 2003 ICMEs: ACE/EPAM solar energetic particle observations (Special Section: ‘Violent Sun – Earth Connection Events of October – November 2003’). J. Geophys. Res. 110, A09S06.  DOI. ADSCrossRefGoogle Scholar
  51. Mayaud, P.N.: 1973, A 100-Year Series of Geomagnetic Data: Indices Aa, Storm Sudden Commencements, IAGA Bull. 33, Internat. Union of Geod. and Geophys, Paris. Google Scholar
  52. McIntosh, D.H.: 1959, On the annual variation of magnetic disturbance. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 251, 525. ADSCrossRefGoogle Scholar
  53. Meng, C.-I.: 1984, Dynamic variation of the auroral oval during intense magnetic storms. J. Geophys. Res. 89, 227. ADSCrossRefGoogle Scholar
  54. Milan, S.E., Boakes, P.D., Hubert, B.: 2008, Response of the expanding/contracting polar cap to weak and strong solar wind driving: implications for substorm onset. J. Geophys. Res. 113, A09215.  DOI. ADSCrossRefGoogle Scholar
  55. Milan, S.E., Hutchinson, J., Boakes, P.D., Hubert, B.: 2009, Ann. Geophys. 27, 2913. ADSCrossRefGoogle Scholar
  56. Mursula, K., Holappa, L., Karinen, A.: 2008, Correct normalization of the Dst index. Astrophys. Space Sci. Trans. 4, 41. ADSCrossRefGoogle Scholar
  57. Nakai, H., Kamide, Y.: 2003, Substorm-associated large-scale magnetic field changes in the magnetotail: a prerequisite for “magnetotail deflation” events. Ann. Geophys. 21, 869. ADSCrossRefGoogle Scholar
  58. van Nes, P., Roelof, E.C., Reinhard, R.: 1984a, Diffusion coefficients of low energy protons upstream of quasi-parallel interplanetary shocks. Adv. Space Res. 4, 315. ADSGoogle Scholar
  59. van Nes, P., Reinhard, R., Sanderson, T.R., Wenzel, K.-P., Zwickl, R.D.: 1984b, The energy spectrum of 35- to 1600-keV protons associated with interplanetary shocks. J. Geophys. Res. 89, 2122. ADSCrossRefGoogle Scholar
  60. Nevanlinna, H., Kataja, E.: 1993, An extension of the geomagnetic activity index series aa for two solar (1844 – 1868). Geophys. Res. Lett. 20, 2703. ADSCrossRefGoogle Scholar
  61. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112, A01206.  DOI. ADSGoogle Scholar
  62. Newton, H.W.: 1948, A distinctive geomagnetic epoch, 1941 June 9 – 14. Observatory 68, 60. ADSGoogle Scholar
  63. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. ADSCrossRefGoogle Scholar
  64. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189.  DOI. ADSCrossRefGoogle Scholar
  65. Richardson, I.G., Cane, H.V.: 2011a, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995 – 2009. Solar Phys. 270, 609. ADSCrossRefGoogle Scholar
  66. Richardson, I.G., Cane, H.V.: 2011b, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, S07005.  DOI. ADSCrossRefGoogle Scholar
  67. Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, N.: 2006, Major geomagnetic storms (\(\mathrm{Dst}\leq 100~\mbox{nT}\)) generated by co-rotating interaction regions. J. Geophys. Res. 11, A07S09.  DOI. Google Scholar
  68. Russell, C.T., McPherron, R.L.: 1973, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92. ADSCrossRefGoogle Scholar
  69. Sarris, E.T., van Allen, J.: 1974, Effects of interplanetary shock waves on energetic charged particles. J. Geophys. Res. 79, 4157. ADSCrossRefGoogle Scholar
  70. Siscoe, G.L., Formisano, V., Lazarus, A.J.: 1968, Relation between geomagnetic sudden impulses and solar wind pressure changes – an empirical investigation. J. Geophys. Res. 73, 4869. ADSCrossRefGoogle Scholar
  71. Skoug, R.M., Gosling, J.T., Steinberg, J.T., McComas, D.J., Smith, C.W., Ness, N.F., Hu, Q., Burlaga, L.F.: 2004, Extremely high speed solar wind: 29 – 30 October 2003. J. Geophys. Res. 109, A09102.  DOI. ADSCrossRefGoogle Scholar
  72. Smart, D.F., Shea, M.A., Flückiger, E.O.: 2000, Space Sci. Rev. 93, 305. ADSCrossRefGoogle Scholar
  73. Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 49. Google Scholar
  74. Svalgaard, L.: 1977, Geomagnetic activity: dependence on solar wind parameters. In: Zirker, J.B. (ed.) Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder, 371. Google Scholar
  75. Svalgaard, L., Cliver, E.W., Ling, A.G.: 2002, The semiannual variation of great geomagnetic storms. Geophys. Res. Lett. 29, 1765. ADSCrossRefGoogle Scholar
  76. Svalgaard, L., Cliver, E.W.: 2010, Heliospheric magnetic field 1835 – 2009. J. Geophys. Res. 115.  DOI.
  77. Tsurutani, B.T., Lakhina, G.S.: 2013, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett.  DOI. Google Scholar
  78. Tsurutani, T., Lakhina, G.S.: 2014, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett. 41, 287. ADSCrossRefGoogle Scholar
  79. Tsurutani, B.T., Gonzales, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73. ADSCrossRefGoogle Scholar
  80. Tsurutani, B.T., Echer, E., Guarnieri, F.L., Koyzera, J.U.: 2008, CAWSES November 7 – 8, 2004, superstorm: complex solar and interplanetary features in the post-solar maximum phase. Geophys. Res. Lett. 35, L06S05.  DOI. CrossRefGoogle Scholar
  81. Vennerstroem, S.: 2000, Long-term rise in geomagnetic activity – a close connection between quiet days and storms. Geophys. Res. Lett. 27, 69. ADSCrossRefGoogle Scholar
  82. Vennerstroem, S.: 2001, Interplanetary sources of magnetic storms: a statistical study. J. Geophys. Res. 106, 29175. ADSCrossRefGoogle Scholar
  83. Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A58. CrossRefGoogle Scholar
  84. Wang, Y.M., Ye, P.Z., Wang, S., Xue, X.H.: 2003, An interplanetary cause of large geomagnetic storms: fast forward shock overtaking preceeding magnetic cloud. Geophys. Res. Lett. 30(13), 1700. ADSCrossRefGoogle Scholar
  85. Wu, C.-C., Dryer, M.: 1996, Predicting the initial IMF Bz polarity’s change at 1 AU caused by shocks that precede coronal mass ejections. Geophys. Res. Lett. 23, 1709. ADSCrossRefGoogle Scholar
  86. Zhang, J., Richardson, I.G., Webb, D.F.: 2008, Interplanetary origin of multi-dip geomagnetic storms. J. Geophys. Res. 113, A00A12.  DOI. CrossRefGoogle Scholar
  87. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} <-100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102.  DOI. ADSGoogle Scholar
  88. Zurbuchen, T.H., Gloeckler, G., Ipavich, F., Raines, J., Smith, C.W., Fisk, L.A.: 2004, On the fast coronal mass ejections in October/November 2003: ACE-SWICS results. Geophys. Res. Lett. 31, L11805.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. Vennerstrom
    • 1
  • L. Lefevre
    • 2
  • M. Dumbović
    • 3
  • N. Crosby
    • 4
  • O. Malandraki
    • 5
  • I. Patsou
    • 5
  • F. Clette
    • 2
  • A. Veronig
    • 6
  • B. Vršnak
    • 3
  • K. Leer
    • 1
  • T. Moretto
    • 7
  1. 1.National Space InstituteDTU SpaceKgs. LyngbyDenmark
  2. 2.Royal Observatory of BelgiumBrusselsBelgium
  3. 3.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  4. 4.Royal Belgian Institute for Space AeronomyBrusselsBelgium
  5. 5.IAASARSNational Observatory of AthensAthensGreece
  6. 6.University of GrazGrazAustria
  7. 7.National Science FoundationArlingtonUSA

Personalised recommendations