Solar Physics

, Volume 291, Issue 4, pp 1143–1157

# On the Ratio of Periods of the Fundamental Harmonic and First Overtone of Magnetic Tube Kink Oscillations

Article

## Abstract

We study kink oscillations of thin magnetic tubes. We assume that the density inside and outside the tube (and possibly also the cross-section radius) can vary along the tube. This variation is assumed to be of such a form that the kink speed is symmetric with respect to the tube centre and varies monotonically from the tube ends to the tube centre. Then we prove a theorem stating that the ratio of periods of the fundamental mode and first overtone is a monotonically increasing function of the ratio of the kink speed at the tube centre and the tube ends. In particular, it follows from this theorem that the period ratio is lower than two when the kink speed increases from the tube ends to its centre, while it is higher than two when the kink speed decreases from the tube ends to its centre. The first case is typical for non-expanding coronal magnetic loops, and the second for prominence threads. We apply the general results to particular problems. First we consider kink oscillations of coronal magnetic loops. We prove that, under reasonable assumptions, the ratio of the fundamental period to the first overtone is lower than two and decreases when the loop size increases. The second problem concerns kink oscillations of prominence threads. We consider three internal density profiles: generalised parabolic, Gaussian, and Lorentzian. Each of these profiles contain the parameter $$\alpha$$ that is responsible for its sharpness. We calculate the dependence of the period ratio on the ratio of the mean to the maximum density. For all considered values of $$\alpha$$ we find that a formula relating the period ratio and the ratio of the mean and maximum density suggested by Soler, Goossens, and Ballester (Astron. Astrophys.575, A123, 2015) gives a sufficiently good approximation to the exact dependence.

### Keywords

Corona Coronal magnetic loops Prominences Waves Oscillations

### References

1. Andries, J., Arregui, I., Goossens, M.: 2005, Astrophys. J. Lett. 624, L57. ADS. DOI.
2. Andries, J., Van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Space Sci. Rev. 149, 3. ADS. DOI.
3. Arregui, I., Oliver, R., Ballester, J.L.: 2012, Living Rev. Solar Phys. 9, A2. ADS. DOI.
4. Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., Poedts, S.: 2007, Astron. Astrophys. 463, 333. ADS. DOI.
5. Arregui, I., Soler, R., Ballester, J.L., Wright, A.N.: 2011, Astron. Astrophys. 533, A60. ADS. DOI.
6. Aschwanden, M.J.: 2006, Phil. Trans. Roy. Soc. A 364, 417. ADS. DOI.
7. Aschwanden, M.J., Schrijver, C.J.: 2011, Astrophys. J. 736, A102. ADS. DOI.
8. Aschwanden, M.J., Terradas, J.: 2008, Astrophys. J. Lett. 686, L127. ADS. DOI.
9. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Astrophys. J. 520, 880. ADS. DOI.
10. Berger, T.E., Shine, R.A., Slater, G.L., Tarbell, T.D., Title, A.M., Okamoto, T.J., et al.: 2008, Astrophys. J. Lett. 676, L89. ADS. DOI.
11. Coddington, E.A., Levinson, N.: 1955, Theory of Ordinary Differential Equations, McGraw–Hill, New York.
12. Díaz, A.J., Donelly, G.R., Roberts, B.: 2007, Astron. Astrophys. 476, 359. ADS. DOI.
13. Díaz, A.J., Oliver, R., Ballester, J.L.: 2010, Astrophys. J. 725, 1742. ADS. DOI.
14. Dymova, M., Ruderman, M.S.: 2005, Solar Phys. 229, 79. ADS. DOI.
15. Dymova, M., Ruderman, M.S.: 2006a, Astron. Astrophys. 457, 1059. ADS. DOI.
16. Dymova, M., Ruderman, M.S.: 2006b, Astron. Astrophys. 459, 241. ADS. DOI.
17. Lin, Y., Engvold, O., Rouppe van der Voort, L.H.M., van Noort, M.: 2007, Solar Phys. 246, 65. ADS. DOI.
18. Lin, Y., Soler, R., Engvold, O., Ballester, J.L., Langangen, O., Oliver, R., van der Voort, L.H.M.R.: 2009, Astrophys. J. 704, 870. ADS. DOI.
19. Nakariakov, V., Ofman, L.: 2001, Astron. Astrophys. 372, L53. ADS. DOI.
20. Nakariakov, V., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862. ADS. DOI.
21. Ofman, L., Aschwanden, M.J.: 2002, Astrophys. J. 576, L153. ADS. DOI.
22. Okamoto, T.J., Tsuneta, S., Berger, T.E., Ichimoto, K., Katsukawa, Y., Lites, B.W., et al.: 2007, Science 318, 1577. ADS. DOI.
23. Orozco Surez, D., Díaz, A.J., Asensio Ramos, A., Trujillo Bueno, J.: 2014, Astrophys. J. Lett. 785, L10. ADS. DOI.
24. Ruderman, M.S.: 2015, Solar Phys. 290, 423. ADS. DOI.
25. Ruderman, M.S., Verth, G., Erdélyi, R.: 2008, Astrophys. J. 686, 694. ADS. DOI.
26. Safari, H., Nasiri, S., Sobouti, Y.: 2007, Astron. Astrophys. 470, 1111. ADS. DOI.
27. Soler, R., Goossens, M.: 2011, Astron. Astrophys. 531, A167. ADS. DOI.
28. Soler, R., Goossens, M., Ballester, J.L.: 2015, Astron. Astrophys. 575, A123. ADS. DOI.
29. Soler, R., Ruderman, M.S., Goossens, M.: 2012, Astron. Astrophys. 546, A82. ADS. DOI.
30. Soler, R., Arregui, I., Oliver, R., Ballester, J.L.: 2010, Astrophys. J. 722, 1778. ADS. DOI.
31. Terradas, J., Arregui, I., Oliver, R., Ballester, J.L.: 2008, Astrophys. J. Lett. 678, L153. ADS. DOI.
32. Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: 2007, Astron. Astrophys. 473, 959. ADS. DOI.
33. Verth, G., Erdélyi, R.: 2007, Astron. Astrophys. 486, 1015. ADS. DOI.
34. Verth, G., Erdélyi, R., Jess, D.B.: 2008, Astrophys. J. Lett. 687, L45. ADS. DOI.
35. Verwichte, E., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Solar Phys. 223, 77. ADS. DOI.

## Authors and Affiliations

• M. S. Ruderman
• 1
• 2
• N. S. Petrukhin
• 3
• E. Pelinovsky
• 4
• 5
1. 1.Solar Physics and Space Plasma Research Centre (SP²RC), School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
2. 2.Space Research Institute (IKI)Russian Academy of SciencesMoscowRussia
3. 3.National Research University Higher School of EconomicsMoscowRussia
4. 4.Department of Nonlinear Geophysical ProcessesInstitute of Applied PhysicsNizhny NovgorodRussia
5. 5.Nizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia