Solar Physics

, Volume 291, Issue 4, pp 1225–1239 | Cite as

Analysis of the Ground-Level Enhancements on 14 July 2000 and 13 December 2006 Using Neutron Monitor Data

  • A. MishevEmail author
  • I. Usoskin


On the basis of neutron monitor data, we estimate the energy spectrum, anisotropy axis direction, and pitch-angle distribution of solar energetic particles during two major ground-level enhancements (GLE 59 on 14 July 2000 and GLE 70 on 13 December 2006). For the analysis we used a newly computed neutron monitor yield function. The method consists of several consecutive steps: definition of the asymptotic viewing cones of neutron monitor stations considered for the data analysis by computing the cosmic ray particle propagation in a model magnetosphere with the MAGNETOCOSMICS code, computing the neutron monitor model responses, and deriving the solar energetic particle characteristics on the basis of inverse problem solution. The pitch-angle distribution and rigidity spectrum of high-energy protons are obtained as a function of time in the course of ground-level enhancements. A comparison with previously reported results is performed and reasonable agreement is achieved. A discussion of the obtained results is included.


Solar eruptive events Neutron Monitor Yield function 



This work was supported by the Center of Excellence ReSoLVE (project No. 272157). We acknowledge all the colleagues from the neutron monitor stations, who kindly provided the data used in this analysis, namely: Alma Ata, Apatity, Barentsburg, Calgary, Cape Schmidt, Forth Smith, Goose Bay, Hermanus, Hobart, Inuvik, Irkutsk, Jungfraujoch, Kerguelen, Kiel, Kingston, Lomnicky Štit, Magadan, Mawson, McMurdo, Moscow, Nain, Newark, Norilsk, Oulu, Peawanuck, Rome, Sanae, South Pole, Terre Adelie, Thule, Tixie, Yakutsk. The authors would like to thank the anonymous referee for the comments and suggestions that helped us improve this article.


  1. Andriopoulou, M., Mavromichalaki, H., Plainaki, C., Belov, A., Eroshenko, E.: 2011a, Intense ground-level enhancements of solar cosmic rays during the last solar cycles. Solar Phys. 269, 155.  DOI. ADSCrossRefGoogle Scholar
  2. Andriopoulou, M., Mavromichalaki, H., Preka-Papadema, P., Plainaki, C., Belov, A., Eroshenko, E.: 2011b, Solar activity and the associated ground level enhancements of solar cosmic rays during solar cycle 23. Astrophys. Space Sci. Trans. 7, 439.  DOI. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171, 3.  DOI. ADSCrossRefGoogle Scholar
  4. Aster, R.C., Borchers, B., Thurber, C.H.: 2005, Parameter Estimation and Inverse Problems, Elsevier, New York. 0-12-065604-3. zbMATHGoogle Scholar
  5. Bazilevskaya, G.A., Usoskin, I.G., Flückiger, E.O., Harrison, R.G., Desorgher, L., Bütikofer, B., Krainev, M.B., Makhmutov, V.S., Stozhkov, Y.I., Svirzhevskaya, A.K., Svirzhevsky, N.S., Kovaltsov, G.A.: 2008, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149.  DOI. ADSCrossRefGoogle Scholar
  6. Bieber, J.W., Evenson, P.A.: 1995, Spaceship Earth – an optimized network of neutron monitors. In: Proc. of 24th ICRC Rome, Italy, 28 August – 8 September 1995, 4, 1316. Google Scholar
  7. Bieber, J.W., Droge, W., Evenson, P.A., Pyle, K.R., Ruffolo, D., Pinsook, U., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Krucker, S.: 2002, Energetic particle observations during the 2000 July 14 solar event. Astrophys. J. 567, 622.  DOI. ADSCrossRefGoogle Scholar
  8. Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Sáiz, A., Ruffolo, D.: 2013, Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations. Astrophys. J. 771, 92.  DOI. ADSCrossRefGoogle Scholar
  9. Bombardieri, D.J., Duldig, M.L., Michael, K.J., Humble, J.E.: 2006, Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. Astrophys. J. 644, 565.  DOI. ADSCrossRefGoogle Scholar
  10. Bombardieri, D.J., Duldig, M.L., Humble, J.E., Michael, K.J.: 2008, An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events. Astrophys. J. 682, 1315.  DOI. ADSCrossRefGoogle Scholar
  11. Bütikofer, R., Flückiger, E.O.: 2013, Differences in published characteristics of GLE 60 and their consequences on computed radiation dose rates along selected flight paths. J. Phys. Conf. Ser. 409, 012166.  DOI. ADSCrossRefGoogle Scholar
  12. Bütikofer, R., Flückiger, E.O., Desorgher, L., Moser, M.R., Pirard, B.: 2009, The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv. Space Res. 43, 499.  DOI. ADSCrossRefGoogle Scholar
  13. Bütikofer, R., Flückiger, E.O., Balabin, Y., Belov, A.: 2013, The reliability of GLE analysis based on neutron monitor data – a critical review. In: Proc. of 33th ICRC, Rio de Janeiro, Brazil, 2 – 9 July 2013, 0863. Google Scholar
  14. Caballero-Lopez, R.A., Moraal, H.: 2004, Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 109, A01101.  DOI. ADSGoogle Scholar
  15. Clem, J., Dorman, L.: 2000, Neutron monitor response functions. Space Sci. Rev. 93, 335. ADSCrossRefGoogle Scholar
  16. Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. ADSCrossRefGoogle Scholar
  17. Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., Goret, P., Petrou, N.: 1991, On cosmic-ray cutoff terminology. Nuovo Cimento C 14, 213. ADSCrossRefGoogle Scholar
  18. Cramp, J.L., Humble, J.E., Duldig, M.L.: 1995, The cosmic ray ground-level enhancement of 24 October 1989. In: Proceedings Astronomical Society of Australia 11, 28. Google Scholar
  19. Cramp, J.L., Duldig, M.L., Flückiger, E.O., Humble, J.E., Shea, M.A., Smart, D.F.: 1997, The October 22, 1989, solar cosmic enhancement: Ray an analysis the anisotropy spectral characteristics. J. Geophys. Res. 102, 24237. ADSCrossRefGoogle Scholar
  20. Debrunner, H., Brunberg, E.: 1968, Monte Carlo calculation of nucleonic cascade in the atmosphere. Can. J. Phys. 46, 1069. CrossRefGoogle Scholar
  21. Debrunner, H., Flückiger, E.O., Gradel, H., Lockwood, J.A., McGuire, R.E.: 1988, Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J. Geophys. Res. 93, 7206. ADSCrossRefGoogle Scholar
  22. Dennis, J.E., Schnabel, R.B.: 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs. 978-0-898713-64-0. CrossRefzbMATHGoogle Scholar
  23. Desorgher, L., Flückiger, E.O., Gurtner, M., Moser, M.R., Bütikofer, R.: 2005, A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802.  DOI. ADSCrossRefGoogle Scholar
  24. Desorgher, L., Kudela, K., Flückiger, E.O., Bütikofer, R., Storini, M., Kalegaev, V.: 2009, Comparison of earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys. 57, 75.  DOI. ADSCrossRefGoogle Scholar
  25. Dorman, L.: 2004, Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer Academic, Dordrecht. 1-4020-2071-6. CrossRefGoogle Scholar
  26. Dorman, L.: 2006, Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas, Astrophysics and Space Science Library 339, Springer, Dordrecht, 978-1-4020-5100-5. Google Scholar
  27. Dryer, M., Fry, C.D., Sun, W., Deehr, C., Smith, Z., Akasofu, S.-I., Andrews, M.D.: 2001, Prediction in real time of the 2000 July 14 heliospheric shock wave and its companions during the ‘bastille’ epoch. Solar Phys. 204, 267. ADSCrossRefGoogle Scholar
  28. Duldig, M.L., Cramp, J.L., Humble, J.E., Smart, D.F., Shea, M.A., Bieber, J.W., Evenson, P., Fenton, K.B., Fenton, A.G., Bendoricchio, M.B.M.: 1995, The ground level enhancements of 1989 September and October 22. In: Proceedings Astronomical Society of Australia 10, 211. Google Scholar
  29. Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011. ADSCrossRefGoogle Scholar
  30. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23.  DOI. ADSCrossRefGoogle Scholar
  31. Hatton, C.: 1971, The neutron monitor. In: Progress in Elementary Particle and Cosmic-ray Physics X, North-Holland, Amsterdam, Chapter 1. Google Scholar
  32. Humble, J.E., Duldig, M.L., Smart, D.F., Shea, M.A.: 1991, Detection of 0.5 – 15 GeV solar protons on 29 September 1989 at australian stations. Geophys. Res. Lett. 18, 737. ADSCrossRefGoogle Scholar
  33. Kallenrode, M.-B., Cliver, E.W., Wibberenz, G.: 1992, Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares. Astrophys. J. 391, 370. ADSCrossRefGoogle Scholar
  34. Klein, K.-L., Trottet, G., Lantos, P., Delaboudinière, J.-P.: 2001, Coronal electron acceleration and relativistic proton production during the 14 July 2000 flare and CME. Astron. Astrophys. 373, 1073. ADSCrossRefGoogle Scholar
  35. Kudela, K., Bučik, R., Bobik, P.: 2008, On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv. Space Res. 42, 1300.  DOI. ADSCrossRefGoogle Scholar
  36. Kudela, K., Usoskin, I.: 2004, On magnetospheric transmissivity of cosmic rays. Czechoslov. J. Phys. 54, 239.  DOI. ADSCrossRefGoogle Scholar
  37. Langel, R.A.: 1987, Main field in geomagnetism. In: Geomagnetism, J.A. Jacobs Academic Press, London, 249, Chapter 1. Google Scholar
  38. Levenberg, K.: 1944, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164. MathSciNetzbMATHGoogle Scholar
  39. Lockwood, J.A., Debrunner, H., Flükiger, E.O.: 1990, Indications for diffusive coronal shock acceleration of protons in selected solar cosmic ray events. J. Geophys. Res. 95, 4187. ADSCrossRefGoogle Scholar
  40. Marquardt, D.: 1963, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431. MathSciNetCrossRefzbMATHGoogle Scholar
  41. Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flückiger, E.O., Bütikofer, R., Parisi, M., Storini, M., Klein, K.-L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’Nik, L.: 2011, Applications and usage of the real-time neutron monitor database. Adv. Space Res. 47, 2210.  DOI. ADSCrossRefGoogle Scholar
  42. Mishev, A.L., Kocharov, L.G., Usoskin, I.G.: 2014, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. 119, 670.  DOI. CrossRefGoogle Scholar
  43. Mishev, A., Usoskin, I.: 2013, Computations of cosmic ray propagation in the Earth’s atmosphere, towards a gle analysis. J. Phys. Conf. Ser. 409, 012152.  DOI. ADSCrossRefGoogle Scholar
  44. Mishev, A., Usoskin, I., Kovaltsov, G.: 2013, Neutron monitor yield function: New improved computations. J. Geophys. Res. 118, 2783.  DOI. CrossRefGoogle Scholar
  45. Mishev, A.L., Velinov, P.I.Y.: 2015, Time evolution of ionization effect due to cosmic rays in terrestrial atmosphere during GLE 70. J. Atmos. Solar-Terr. Phys. 129, 78.  DOI. ADSCrossRefGoogle Scholar
  46. Moraal, H., McCracken, K.G.: 2012, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. 171, 85.  DOI. ADSCrossRefGoogle Scholar
  47. More, G., Garbow, B.S., Hillstrom, K.E.: 1980, User guide for Minpack-1. Report ANL 80-74, Argonne National Laboratory, Downers Grove Township, Ill., USA. Google Scholar
  48. Nevalainen, J., Usoskin, I., Mishev, A.: 2013, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52, 22.  DOI. ADSCrossRefGoogle Scholar
  49. Perez-Peraza, J.A., Vashenyuk, E.V., Gallegos-Cruz, A., Balabin, Y.V., Miroshnichenko, L.I.: 2008, Relativistic proton production at the sun in the 20 January 2005 solar event. Adv. Space Res. 41, 947.  DOI. ADSCrossRefGoogle Scholar
  50. Plainaki, C., Belov, A., Eroshenko, E., Mavromichalaki, H., Yanke, V.: 2007, Modeling ground level enhancements: Event of 20 January 2005. J. Geophys. Res. 112, A04102.  DOI. ADSCrossRefGoogle Scholar
  51. Plainaki, C., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V.: 2009, Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data. Adv. Space Res. 43, 474.  DOI. ADSCrossRefGoogle Scholar
  52. Reames, D.V.: 1999, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413. ADSCrossRefGoogle Scholar
  53. Reames, D.V.: 2009a, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844.  DOI. ADSCrossRefGoogle Scholar
  54. Reames, D.V.: 2009b, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812.  DOI. ADSCrossRefGoogle Scholar
  55. Shea, M.A., Smart, D.F.: 1982, Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev. 32, 251. ADSGoogle Scholar
  56. Shea, M.A., Smart, D.F.: 1990, A summary of major solar proton events. Solar Phys. 127, 297. ADSCrossRefGoogle Scholar
  57. Simpson, J., Fonger, W., Treiman, S.: 1953, Cosmic radiation intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934. ADSCrossRefGoogle Scholar
  58. Smart, D.F., Shea, M.A., Flückiger, E.O.: 2000, Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305. ADSCrossRefGoogle Scholar
  59. Tsyganenko, N.A.: 1989, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5. ADSCrossRefGoogle Scholar
  60. Tylka, A., Dietrich, W.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle. In: Proc. of 31th ICRC, Lodz, Poland, 7 – 15 July 2009. Google Scholar
  61. Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, A02104.  DOI. ADSCrossRefGoogle Scholar
  62. Usoskin, I., Alanko-Huotari, K., Kovaltsov, G., Mursula, K.: 2005, Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951 – 2004. J. Geophys. Res. 110, A12108.  DOI. ADSCrossRefGoogle Scholar
  63. Usoskin, I.G., Kovaltsov, G.A., Mironova, I.A., Tylka, A.J., Dietrich, W.F.: 2011, Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos. Chem. Phys. 11, 1979.  DOI. ADSCrossRefGoogle Scholar
  64. Usoskin, I.G., Ibragimov, A., Shea, M.A., Smart, D.F.: 2015, Database of ground level enhancements (GLE) of high energy solar proton events. In: Proc. of 34th ICRC, Hague, Netherlands, 30 July – 6 August 2015, PoS, paper 54. Google Scholar
  65. Vashenyuk, E.V., Balabin, Y.V., Gvozdevskii, B.B., Karpov, S.N.: 2006a, Relativistic solar protons in the event of January 20, 2005: Model studies. Geomagn. Aeron. 46, 424.  DOI. ADSCrossRefGoogle Scholar
  66. Vashenyuk, E.V., Balabin, Y.V., Perez-Peraza, J., Gallegos-Cruz, A., Miroshnichenko, L.I.: 2006b, Some features of the sources of relativistic particles at the sun in the solar cycles 21 – 23. Adv. Space Res. 38, 411.  DOI. ADSCrossRefGoogle Scholar
  67. Vashenyuk, E.V., Balabin, Y.V., Gvozdevsky, B.B., Schur, L.I.: 2008, Characteristics of relativistic solar cosmic rays during the event of December 13, 2006. Geomagn. Aeron. 48, 149.  DOI. ADSCrossRefGoogle Scholar
  68. Žigman, V., Kudela, K., Grubor, D.: 2014, Response of the Earth’s lower ionosphere to the ground level enhancement event of December 13, 2006. Adv. Space Res. 53, 763.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.ReSolve Center of ExcellenceUniversity of OuluOuluFinland
  2. 2.Sodankylä Geophysical Observatory (Oulu unit)University of OuluOuluFinland

Personalised recommendations