Solar Physics

, Volume 291, Issue 2, pp 411–427 | Cite as

Performance of Major Flare Watches from the Max Millennium Program (2001 – 2010)

  • D. S. BloomfieldEmail author
  • P. T. Gallagher
  • W. H. Marquette
  • R. O. Milligan
  • R. C. Canfield


The physical processes that trigger solar flares are not well understood, and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares ≥ X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, which finds that (1) 220 MFWs were issued in 3407 days considered (6.5 % duty cycle), with these occurring in 32 uninterrupted periods that typically last 2 – 8 days; (2) 56% of flares ≥ X1 were caught, occurring in 19 % of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).


Active regions, magnetic fields Flares, forecasting Flares, relation to magnetic field Magnetic fields, photosphere Sunspots, statistics 



The authors wish to thank the excellent efforts of both our newest MMCO (Ying Li) and past MMCOs who have contributed since 2001 (in alphabetical surname order: Paul A. Higgins, R.T. James McAteer, and Claire L. Raftery), Keiji Yoshimura for maintaining the Max Millennium website, and the referee for useful comments that helped improve the manuscript. The Max Millennium program has been supported by the enlightened RHESSI PI team led by Principle Investigator Robert P. Lin (later Säm Krucker) and Project Scientist Brian R. Dennis through Sub-agreement No. SA-1868 26308PG between University of California, Berkeley and Montana State University. DSB received funding from the European Space Agency PRODEX Programme and the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640216 (FLARECAST project). ROM received funding from NASA LWS/TR&T grant NNX11AQ53G and NASA LWS/SDO Data Analysis grant NNX14AE07G.


  1. Aschwanden, M.J., Freeland, S.L.: 2012, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: The invariance of self-organized criticality during three solar cycles. Astrophys. J. 754, 112.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., et al.: 2009, The Large Area Telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, 6001.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Crown, M.D.: 2012, Validation of the NOAA space weather prediction center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 10, 6006.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Gallagher, P.T., Moon, Y.-J., Wang, H.: 2002, Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys. 209, 171.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Hanssen, A.W., Kuipers, W.J.A.: 1965, On the relationship between the frequency of rain and various meteorological parameters. Meded. Ver. 81. Royal Netherlands Meteorological Institute. Google Scholar
  12. Heidke, P.: 1926, Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geogr. Ann. 8, 310. zbMATHGoogle Scholar
  13. Hudson, H.S., Fisher, G.H., Welsch, B.T.: 2008, Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, ASP Conf. Ser. 383, 221. ADS. Google Scholar
  14. Hudson, H.S., Peterson, L.E., Schwartz, D.A.: 1969, The hard solar X-ray spectrum observed from the third orbiting solar observatory. Astrophys. J. 157, 389.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Kazachenko, M.D., Fisher, G.H., Welsch, B.T.: 2014, A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements. Astrophys. J. 795, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kretzschmar, M.: 2011, The sun as a star: Observations of white-light flares. Astron. Astrophys. 530, A84.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  17. Krucker, S., Giménez de Castro, C.G., Hudson, H.S., Trottet, G., Bastian, T.S., Hales, A.S., et al.: 2013, Solar flares at submillimeter wavelengths. Astron. Astrophys. Rev. 21, 58.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Künzel, H.: 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr. 285, 271. ADS. ADSCrossRefGoogle Scholar
  19. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. MacTaggart, D.: 2011, Flux emergence within mature solar active regions. Astron. Astrophys. 531, A108.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723, 634.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2012, The evolution of sunspot magnetic fields associated with a solar flare. Solar Phys. 277, 45.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Sawyer, C., Warwick, J.W., Dennett, J.T.: 1986, Solar Flare Prediction, Colorado Associated University Press, Boulder, CO. ADS.
  25. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Schrijver, C.J., De Rosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: 2009, Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254, 101.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., et al.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Zirin, H., Marquette, W.: 1991, BEARALERTS – a successful flare prediction system. Solar Phys. 131, 149.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of PhysicsTrinity College DublinDublin 2Ireland
  2. 2.Helio ResearchLa CrescentaUSA
  3. 3.Astrophysics Research Centre, School of Mathematics and PhysicsQueen’s University BelfastBelfastUK
  4. 4.Solar Physics Laboratory (Code 671), Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Department of PhysicsCatholic University of AmericaWashingtonUSA
  6. 6.Montana State UniversityBozemanUSA

Personalised recommendations