Solar Physics

, Volume 291, Issue 1, pp 143–153 | Cite as

Simulations of 3D Magnetic Merging: Resistive Scalings for Null Point and QSL Reconnection

  • Frederic Effenberger
  • I. J. D. Craig


Starting from an exact, steady-state, force-free solution of the magnetohydrodynamic (MHD) equations, we investigate how resistive current layers are induced by perturbing line-tied three-dimensional magnetic equilibria. This is achieved by the superposition of a weak perturbation field in the domain, in contrast to studies where the boundary is driven by slow motions, like those present in photospheric active regions. Our aim is to quantify how the current structures are altered by the contribution of so-called quasi-separatrix layers (QSLs) as the null point is shifted outside the computational domain. Previous studies based on magneto-frictional relaxation have indicated that despite the severe field line gradients of the QSL, the presence of a null is vital in maintaining fast reconnection. Here, we explore this notion using highly resolved simulations of the full MHD evolution. We show that for the null-point configuration, the resistive scaling of the peak current density is close to \(J\sim\eta^{-1}\), while the scaling is much weaker, i.e. \(J\sim\eta^{-0.4}\), when only the QSL connectivity gradients provide a site for the current accumulation.


Magnetic reconnection Electric currents and current sheets Flares Magnetic fields, corona Magnetic fields, models 



We acknowledge the work that has been devoted to the development and documentation of the PLUTO MHD code used in this study. Work performed by F. Effenberger was partially supported by NASA grant NNX14AG03G. Constructive comments of an anonymous referee are appreciated.


  1. Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Aulanier, G., Pariat, E., Démoulin, P., DeVore, C.R.: 2006, Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238, 347.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Baker, D., van vanDriel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Biskamp, D.: 1986, Magnetic reconnection via current sheets. Phys. Fluids 29, 1520.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  5. Craig, I.J.D., Effenberger, F.: 2014, Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls. Astrophys. J. 795, 129.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Craig, I.J.D., Fabling, R.B.: 1996, Exact solutions for steady state, spine, and fan magnetic reconnection. Astrophys. J. 462, 969.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Craig, I.J.D., Litvinenko, Y.E.: 2005, Current singularities in planar magnetic X points of finite compressibility. Phys. Plasmas 12, 032301.  DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  8. Craig, I.J.D., McClymont, A.N.: 1993, Linear theory of fast reconnection at an X-type neutral point. Astrophys. J. 405, 207.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Craig, I.J.D., Pontin, D.I.: 2014, Current singularities in line-tied three-dimensional magnetic fields. Astrophys. J. 788, 177.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: 2002, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645.  DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Demoulin, P., Henoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643. ADS. ADSGoogle Scholar
  13. Effenberger, F., Thust, K., Arnold, L., Grauer, R., Dreher, J.: 2011, Numerical simulation of current sheet formation in a quasiseparatrix layer using adaptive mesh refinement. Phys. Plasmas 18, 032902.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Finn, J.M., Billey, Z., Daughton, W., Zweibel, E.: 2014, Quasi-separatrix layer reconnection for nonlinear line-tied collisionless tearing modes. Plasma Phys. Control. Fusion 56, 064013.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Forbes, T.G.: 1982, Implosion of a uniform current sheet in a low-beta plasma. J. Plasma Phys. 27, 491.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Galsgaard, K.: 2000, Dynamical investigation of three-dimensional reconnection in quasi-separatrix layers in a boundary-driven magnetic field. J. Geophys. Res. 105, 5119.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Heerikhuisen, J., Craig, I.J.D.: 2004, Magnetic reconnection in three dimensions – Spine, fan and separator solutions. Solar Phys. 222, 95.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Heerikhuisen, J., Litvinenko, Y.E., Craig, I.J.D.: 2002, Proton acceleration in analytic reconnecting current sheets. Astrophys. J. 566, 512.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Living Rev. Solar Phys. 2(7).  DOI. ADS.
  20. McClymont, A.N., Craig, I.J.D.: 1996, Dynamical finite-amplitude magnetic reconnection at an X-type neutral point. Astrophys. J. 466, 487.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: 2007, PLUTO: A numerical code for computational astrophysics. Astrophys. J. Suppl. 170, 228.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Mignone, A., Zanni, C., Tzeferacos, P., van vanStraalen, B., Colella, P., Bodo, G.: 2012, The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics. Astrophys. J. Suppl. 198, 7.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Milano, L.J., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Démoulin, P.: 1999, Quasi-separatrix layers in a reduced magnetohydrodynamic model of a coronal loop. Astrophys. J. 521, 889.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Pontin, D.I., Craig, I.J.D.: 2005, Current singularities at finitely compressible three-dimensional magnetic null points. Phys. Plasmas 12, 072112.  DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  25. Pontin, D.I., Bhattacharjee, A., Galsgaard, K.: 2007, Current sheets at three-dimensional magnetic nulls: Effect of compressibility. Phys. Plasmas 14, 052109.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Pontin, D.I., Hornig, G., Wilmot-Smith, A.L., Craig, I.J.D.: 2009, Lagrangian relaxation schemes for calculating force-free magnetic fields, and their limitations. Astrophys. J. 700, 1449.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Priest, E., Forbes, T.: 2000, Magnetic Reconnection, Cambridge University Press, Cambridge. Chapter 7. ADS. CrossRefzbMATHGoogle Scholar
  28. Priest, E.R., Titov, V.S.: 1996, Magnetic reconnection at three-dimensional null points. Phil. Trans. Roy. Soc. London A 354, 2951.  DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Rickard, G.J., Titov, V.S.: 1996, Current accumulation at a three-dimensional magnetic null. Astrophys. J. 472, 840.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Stanier, A., Browning, P., Dalla, S.: 2012, Solar particle acceleration at reconnecting 3D null points. Astron. Astrophys. 542, A47.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Titov, V.S.: 2007, Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WaikatoHamiltonNew Zealand
  2. 2.Department of Physics and KIPACStanford UniversityStanfordUSA

Personalised recommendations