# Simulations of 3D Magnetic Merging: Resistive Scalings for Null Point and QSL Reconnection

- 190 Downloads
- 3 Citations

## Abstract

Starting from an exact, steady-state, force-free solution of the magnetohydrodynamic (MHD) equations, we investigate how resistive current layers are induced by perturbing line-tied three-dimensional magnetic equilibria. This is achieved by the superposition of a weak perturbation field in the domain, in contrast to studies where the boundary is driven by slow motions, like those present in photospheric active regions. Our aim is to quantify how the current structures are altered by the contribution of so-called quasi-separatrix layers (QSLs) as the null point is shifted outside the computational domain. Previous studies based on magneto-frictional relaxation have indicated that despite the severe field line gradients of the QSL, the presence of a null is vital in maintaining fast reconnection. Here, we explore this notion using highly resolved simulations of the full MHD evolution. We show that for the null-point configuration, the resistive scaling of the peak current density is close to \(J\sim\eta^{-1}\), while the scaling is much weaker, *i.e.* \(J\sim\eta^{-0.4}\), when only the QSL connectivity gradients provide a site for the current accumulation.

## Keywords

Magnetic reconnection Electric currents and current sheets Flares Magnetic fields, corona Magnetic fields, models## Notes

### Acknowledgements

We acknowledge the work that has been devoted to the development and documentation of the PLUTO MHD code used in this study. Work performed by F. Effenberger was partially supported by NASA grant NNX14AG03G. Constructive comments of an anonymous referee are appreciated.

## References

- Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes.
*Astron. Astrophys.***444**, 961. DOI. ADS. ADSCrossRefGoogle Scholar - Aulanier, G., Pariat, E., Démoulin, P., DeVore, C.R.: 2006, Slip-running reconnection in quasi-separatrix layers.
*Solar Phys.***238**, 347. DOI. ADS. ADSCrossRefGoogle Scholar - Baker, D., van vanDriel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows.
*Astrophys. J.***705**, 926. DOI. ADS. ADSCrossRefGoogle Scholar - Craig, I.J.D., Effenberger, F.: 2014, Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls.
*Astrophys. J.***795**, 129. DOI. ADS. ADSCrossRefGoogle Scholar - Craig, I.J.D., Fabling, R.B.: 1996, Exact solutions for steady state, spine, and fan magnetic reconnection.
*Astrophys. J.***462**, 969. DOI. ADS. ADSCrossRefGoogle Scholar - Craig, I.J.D., Litvinenko, Y.E.: 2005, Current singularities in planar magnetic X points of finite compressibility.
*Phys. Plasmas***12**, 032301. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar - Craig, I.J.D., McClymont, A.N.: 1993, Linear theory of fast reconnection at an X-type neutral point.
*Astrophys. J.***405**, 207. DOI. ADS. ADSCrossRefGoogle Scholar - Craig, I.J.D., Pontin, D.I.: 2014, Current singularities in line-tied three-dimensional magnetic fields.
*Astrophys. J.***788**, 177. DOI. ADS. ADSCrossRefGoogle Scholar - Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields.
*Astrophys. J.***311**, 451. DOI. ADS. ADSCrossRefGoogle Scholar - Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: 2002, Hyperbolic divergence cleaning for the MHD equations.
*J. Comput. Phys.***175**, 645. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar - Demoulin, P., Henoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method.
*Astron. Astrophys.***308**, 643. ADS. ADSGoogle Scholar - Effenberger, F., Thust, K., Arnold, L., Grauer, R., Dreher, J.: 2011, Numerical simulation of current sheet formation in a quasiseparatrix layer using adaptive mesh refinement.
*Phys. Plasmas***18**, 032902. DOI. ADS. ADSCrossRefGoogle Scholar - Finn, J.M., Billey, Z., Daughton, W., Zweibel, E.: 2014, Quasi-separatrix layer reconnection for nonlinear line-tied collisionless tearing modes.
*Plasma Phys. Control. Fusion***56**, 064013. DOI. ADS. ADSCrossRefGoogle Scholar - Forbes, T.G.: 1982, Implosion of a uniform current sheet in a low-beta plasma.
*J. Plasma Phys.***27**, 491. DOI. ADS. ADSCrossRefGoogle Scholar - Galsgaard, K.: 2000, Dynamical investigation of three-dimensional reconnection in quasi-separatrix layers in a boundary-driven magnetic field.
*J. Geophys. Res.***105**, 5119. DOI. ADS. ADSCrossRefGoogle Scholar - Heerikhuisen, J., Craig, I.J.D.: 2004, Magnetic reconnection in three dimensions – Spine, fan and separator solutions.
*Solar Phys.***222**, 95. DOI. ADS. ADSCrossRefGoogle Scholar - Heerikhuisen, J., Litvinenko, Y.E., Craig, I.J.D.: 2002, Proton acceleration in analytic reconnecting current sheets.
*Astrophys. J.***566**, 512. DOI. ADS. ADSCrossRefGoogle Scholar - McClymont, A.N., Craig, I.J.D.: 1996, Dynamical finite-amplitude magnetic reconnection at an X-type neutral point.
*Astrophys. J.***466**, 487. DOI. ADS. ADSCrossRefGoogle Scholar - Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: 2007, PLUTO: A numerical code for computational astrophysics.
*Astrophys. J. Suppl.***170**, 228. DOI. ADS. ADSCrossRefGoogle Scholar - Mignone, A., Zanni, C., Tzeferacos, P., van vanStraalen, B., Colella, P., Bodo, G.: 2012, The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics.
*Astrophys. J. Suppl.***198**, 7. DOI. ADS. ADSCrossRefGoogle Scholar - Milano, L.J., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Démoulin, P.: 1999, Quasi-separatrix layers in a reduced magnetohydrodynamic model of a coronal loop.
*Astrophys. J.***521**, 889. DOI. ADS. ADSCrossRefGoogle Scholar - Pontin, D.I., Craig, I.J.D.: 2005, Current singularities at finitely compressible three-dimensional magnetic null points.
*Phys. Plasmas***12**, 072112. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar - Pontin, D.I., Bhattacharjee, A., Galsgaard, K.: 2007, Current sheets at three-dimensional magnetic nulls: Effect of compressibility.
*Phys. Plasmas***14**, 052109. DOI. ADS. ADSCrossRefGoogle Scholar - Pontin, D.I., Hornig, G., Wilmot-Smith, A.L., Craig, I.J.D.: 2009, Lagrangian relaxation schemes for calculating force-free magnetic fields, and their limitations.
*Astrophys. J.***700**, 1449. DOI. ADS. ADSCrossRefGoogle Scholar - Priest, E., Forbes, T.: 2000,
*Magnetic Reconnection*, Cambridge University Press, Cambridge. Chapter 7. ADS. CrossRefzbMATHGoogle Scholar - Priest, E.R., Titov, V.S.: 1996, Magnetic reconnection at three-dimensional null points.
*Phil. Trans. Roy. Soc. London A***354**, 2951. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar - Rickard, G.J., Titov, V.S.: 1996, Current accumulation at a three-dimensional magnetic null.
*Astrophys. J.***472**, 840. DOI. ADS. ADSCrossRefGoogle Scholar - Stanier, A., Browning, P., Dalla, S.: 2012, Solar particle acceleration at reconnecting 3D null points.
*Astron. Astrophys.***542**, A47. DOI. ADS. ADSCrossRefGoogle Scholar - Titov, V.S.: 2007, Generalized squashing factors for covariant description of magnetic connectivity in the solar corona.
*Astrophys. J.***660**, 863. DOI. ADS. ADSCrossRefGoogle Scholar