Solar Physics

, Volume 291, Issue 1, pp 187–209 | Cite as

Energy Release in Driven Twisted Coronal Loops

  • M. R. Bareford
  • M. Gordovskyy
  • P. K. Browning
  • A. W. Hood
Article

Abstract

We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

Keywords

Corona Instabilities Magnetic fields Magnetohydrodynamics 

References

  1. Arber, T.G., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, J. Comput. Phys. 171, 151. ADSMathSciNetCrossRefMATHGoogle Scholar
  2. Archontis, V., Hood, A.W., Tsinganos, K.: 2014, Astrophys. J. 778, 42. ADSCrossRefGoogle Scholar
  3. Bareford, M.R., Browning, P.K., Van der Linden, R.A.M.: 2010, Astron. Astrophys. 521, 70. ADSCrossRefGoogle Scholar
  4. Bareford, M.R., Browning, P.K., Van der Linden, R.A.M.: 2011, Solar Phys. 273, 93. ADSCrossRefGoogle Scholar
  5. Bareford, M.R., Hood, A.W., Browning, P.K.: 2013, Astron. Astrophys. 550, 40. ADSCrossRefGoogle Scholar
  6. Bareford, M.R., Hood, A.W.: 2015, Phil. Trans. Roy. Soc. London A 373, 20140266. ADSCrossRefGoogle Scholar
  7. Botha, G.J.J., Arber, T.D., Hood, A.W.: 2011, Astron. Astrophys. 525, A96. ADSCrossRefGoogle Scholar
  8. Braginskii, S.I.: 1965, Rev. Plasma Phys. 1, 205. ADSGoogle Scholar
  9. Brosius, J.W., Dow, A.N., Rabin, D.M.: 2014, Astrophys. J. 790, 112. ADSCrossRefGoogle Scholar
  10. Browning, P.K., Van der Linden, R.A.M.: 2003, Astron. Astrophys. 400, 355. ADSCrossRefGoogle Scholar
  11. Browning, P.K., Gerrard, C., Hood, A.W., Kevis, R., Van der Linden, R.A.M.: 2008, Astron. Astrophys. 485, 837. ADSCrossRefMATHGoogle Scholar
  12. Cargill, P.J.: 2013, Nature 493, 485. ADSCrossRefGoogle Scholar
  13. Cirtain, J.W., Golub, L., Winebarger, A.R., de Pontieu, B., Kobayashi, K., Moore, R.L., et al.: 2013, Nature 493, 501. ADSCrossRefGoogle Scholar
  14. Gordovskyy, M., Browning, P.K.: 2011, Astrophys. J. 729, 101. ADSCrossRefGoogle Scholar
  15. Gordovskyy, M., Browning, P.K.: 2012, Solar Phys. 277, 299. ADSCrossRefGoogle Scholar
  16. Gordovskyy, M., Browning, P.K., Kontar, E.P., Bian, N.H.: 2013, Solar Phys. 284, 489. ADSCrossRefGoogle Scholar
  17. Gordovskyy, M., Browning, P.K., Kontar, E.P., Bian, N.H.: 2014, Astron. Astrophys. 561, 72. ADSCrossRefGoogle Scholar
  18. Gordovskyy, M., Kontar, E.P., Browning, P.K.: 2015, Astron. Astrophys. submitted. arXiv
  19. Hood, A.W., Priest, E.R.: 1979, Solar Phys. 64, 303. ADSCrossRefGoogle Scholar
  20. Hood, A.W.: 1992, Plasma Phys. Control. Fusion 34, 411. ADSCrossRefGoogle Scholar
  21. Hood, A.W., Browning, P.K., Van der Linden, R.A.M.: 2009, Astron. Astrophys. 506, 913. ADSCrossRefGoogle Scholar
  22. Hood, A.W., Archontis, V., MacTaggart, D.: 2012, Solar Phys. 278, 3. ADSCrossRefGoogle Scholar
  23. Klimchuk, J.A.: 2000, Solar Phys. 193, 53. ADSCrossRefGoogle Scholar
  24. Kumar, P., Cho, K.S.: 2014, Astron. Astrophys. 572, A83. ADSCrossRefGoogle Scholar
  25. Kuridze, D., Mathioudakis, M., Kowalski, A.F., Keys, P.H., Jess, D.B., Balasubramaniam, K.S., Keenan, F.P.: 2013, Astron. Astrophys. 552, A55. ADSCrossRefGoogle Scholar
  26. Loureiro, N.F., Schekochihin, A.A., Cowley, S.C.: 2007, Phys. Plasmas 14, 100703. ADSCrossRefGoogle Scholar
  27. Mellor, C., Gerrard, C.L., Galsgaard, K., Hood, A.W., Priest, E.R.: 2005, Solar Phys. 227, 39. ADSCrossRefGoogle Scholar
  28. Parker, E.N.: 1988, Astrophys. J. 330, 474. ADSCrossRefGoogle Scholar
  29. Parnell, C.E., De Moortel, I.: 2012, Phil. Trans. Roy. Soc. London A 370, 3217. ADSCrossRefGoogle Scholar
  30. Peter, H., Bingert, S.: 2012, Astron. Astrophys. 548, 1. ADSCrossRefGoogle Scholar
  31. Pinto, R., Gordovskyy, M., Browning, P.K., Vilmer, N.: 2015, Astron. Astrophys. submitted. Google Scholar
  32. Reale, F.: 2014, Living Rev. Solar Phys. 11(4). http://solarphysics.livingreviews.org/Articles/lrsp-2014-4/.
  33. Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Astrophys. J. 715, 292. ADSCrossRefGoogle Scholar
  34. Van Leer, B.: 1997, J. Comput. Phys. 135, 229. ADSCrossRefMATHGoogle Scholar
  35. Wang, H., Cao, W., Liu, C., Xu, Y., Liu, R., Zeng, Z., Chae, J., Ji, H.: 2015, Nat. Commun. 7, 7008. CrossRefGoogle Scholar
  36. Wilkins, M.L.: 1980, J. Comput. Phys. 36, 281. ADSMathSciNetCrossRefMATHGoogle Scholar
  37. Yan, X.L., Xue, Z.K., Liu, J.H., Kong, D.F., Xu, C.L.: 2014, Astrophys. J. 797, 52. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. R. Bareford
    • 1
  • M. Gordovskyy
    • 2
  • P. K. Browning
    • 2
  • A. W. Hood
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  2. 2.School of Physics and AstronomyUniversity of ManchesterManchesterUK

Personalised recommendations