Solar Physics

, Volume 291, Issue 1, pp 285–302 | Cite as

Forbush Decrease Prediction Based on Remote Solar Observations

Article

Abstract

We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e. short-term depressions in the galactic cosmic-ray flux. The relation between the Forbush effect at Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relations between Forbush decrease magnitude and several CME/flare parameters were found: the initial CME speed, apparent width, source position, associated solar-flare class, and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed to forecast a Forbush-decrease. For this purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of the CME and associated solar flare as input and gives the expected Forbush-decrease magnitude range as output. The forecast method is evaluated using several verification measures, indicating that as the forecast tends to be more specific, it is less reliable, which is its main drawback. However, the advantages of the method are that it provides an early prediction and that the input does not necessarily depend on using a spacecraft.

Keywords

Coronal mass ejections: low coronal signatures Cosmic rays: galactic 

References

  1. Belov, A.V.: 2009, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symp., Proc. Int. Astron. Union, 257, Cambridge University Press, Cambridge, 439. DOI. ADS. Google Scholar
  2. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: 2014, Coronal mass ejections and non-recurrent Forbush decreases. Solar Phys. 289, 3949. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Blanco, J.J., Catalán, E., Hidalgo, M.A., Medina, J., García, O., Rodríguez-Pacheco, J.: 2013, Observable effects of interplanetary coronal mass ejections on ground level neutron monitor count rates. Solar Phys. 284, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI. ADS. ADSGoogle Scholar
  5. Cane, H.V., Richardson, I.G., Wibberenz, G.: 1995, The response of energetic particles to the presence of ejecta material. In: Iucci, N., Lamanna, E. (eds.) Proceedings of the 24th Int. Cosmic Ray Conf., Rome, 4, 377. ADS. Google Scholar
  6. Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – sources of non-recurrent geomagnetic storms and Forbush decreases. Solar Phys. 282, 175. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Chilingarian, A., Bostanjyan, N.: 2010, On the relation of the Forbush decreases detected by ASEC monitors during the 23rd solar activity cycle with ICME parameters. Adv. Space Res. 45, 614. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Devos, A., Verbeeck, C., Robbrecht, E.: 2014, Verification of space weather forecasting at the Regional Warning Center in Belgium. J. Space Weather Space Clim. 4(27), A29. DOI. ADS. ADSGoogle Scholar
  9. Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91+. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.: 2015, Geoeffectiveness of coronal mass ejections in the SOHO era. Solar Phys. 290, 579. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51(12), 1108. DOI. ADSCrossRefGoogle Scholar
  13. Hess, V.F., Demmelmair, A.: 1937, World-wide effect in cosmic ray intensity, as observed during a recent magnetic storm. Nature 140, 316. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: A perspective. Solar Phys. 285, 269. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Jordan, A.P., Spence, H.E., Blake, J.B., Shaul, D.N.A.: 2011, Revisiting two-step Forbush decreases. J. Geophys. Res. 116, 11103. DOI. ADS. CrossRefGoogle Scholar
  16. Krittinatham, W., Ruffolo, D.: 2009, Drift orbits of energetic particles in an interplanetary magnetic flux rope. Astrophys. J. 704, 831. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Kubo, Y., Shimazu, H.: 2010, Effect of finite Larmor radius on cosmic-ray penetration into an interplanetary magnetic flux rope. Astrophys. J. 720, 853. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Kumar, A., Badruddin: 2014, Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays. Solar Phys. 289, 2177. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Le Roux, J.A., Potgieter, M.S.: 1991, The simulation of Forbush decreases with time-dependent cosmic-ray modulation models of varying complexity. Astron. Astrophys. 243, 531. ADS. ADSGoogle Scholar
  20. Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267. DOI. ADS. ADSGoogle Scholar
  22. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Richardson, I.G., Cane, H.V.: 2011, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995 – 2009. Solar Phys. 270, 609. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Stirzaker, D.: 2003, Elementary Probability, Cambridge University Press, New York. CrossRefMATHGoogle Scholar
  26. Sudar, D., Vršnak, B., Dumbović, M.: 2015, Predicting coronal mass ejection transit time to Earth with neural network. Mon. Not. Roy. Astron. Soc., accepted. Google Scholar
  27. Thomas, S.R., Owens, M.J., Lockwood, M., Barnard, L., Scott, C.J.: 2015, Near-Earth cosmic ray decreases associated with remote coronal mass ejections. Astrophys. J. 801, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Uwamahoro, J., McKinnell, L.A., Habarulema, J.B.: 2012, Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Ann. Geophys. 30, 963. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Valach, F., Revallo, M., Bochníček, J., Hejda, P.: 2009, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7, 4004. DOI. ADS. ADSGoogle Scholar
  30. Wibberenz, G., Cane, H.V., Richardson, I.G.: 1997, Two-step Forbush decreases in the inner solar system and their relevance for models of transient disturbances. In: Potgieter, M.S., Raubenheimer, C., van der Walt, D.J. (eds.) Proceedings of the 25th Int. Cosmic Ray Conf., Durban, 1, 397. ADS. Google Scholar
  31. Wibberenz, G., Le Roux, J.A., Potgieter, M.S., Bieber, J.W.: 1998, Transient effects and disturbed conditions. Space Sci. Rev. 83, 309. ADS. ADSGoogle Scholar
  32. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia

Personalised recommendations