Solar Physics

, Volume 290, Issue 12, pp 3525–3543 | Cite as

Mg ii Lines Observed During the X-class Flare on 29 March 2014 by the Interface Region Imaging Spectrograph

  • W. Liu
  • P. Heinzel
  • L. Kleint
  • J. Kašparová
Solar and Stellar Flares


Mg ii lines represent one of the strongest emissions from the chromospheric plasma during solar flares. In this article, we studied the Mg ii lines observed during the X1 flare on 29 March 2014 (SOL2014-03-29T17:48) by the Interface Region Imaging Spectrograph (IRIS). IRIS detected large intensity enhancements of the Mg ii \(h\) and \(k\) lines, subordinate triplet lines, and several other metallic lines at the flare footpoints during this flare. We have used the advantage of the slit-scanning mode (rastering) of IRIS and performed, for the first time, a detailed analysis of spatial and temporal variations of the spectra. Moreover, we were also able to identify positions of strongest hard X-ray (HXR) emissions using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and to correlate them with the spatial and temporal evolution of IRIS Mg ii spectra. The light curves of the Mg ii lines increase and peak contemporarily with the HXR emissions but decay more gradually. There are large red asymmetries in the Mg ii \(h\) and \(k\) lines after the flare peak. We see two spatially well-separated groups of Mg ii line profiles, non-reversed and reversed. In some cases, the Mg ii footpoints with reversed profiles are correlated with HXR sources. We show the spatial and temporal behavior of several other line parameters (line metrics) and briefly discuss them. Finally, we have synthesized the Mg ii \(k\) line using our non-LTE code with the Multilevel Accelerated Lambda Iteration (MALI) technique. Two kinds of models are considered, the flare model F2 of Machado et al. (Astrophys. J. 242, 336, 1980) and the models of Ricchiazzi and Canfield (Astrophys. J. 272, 739, 1983, RC models). Model F2 reproduces the peak intensity of the non-reversed Mg ii \(k\) profile at flare maximum, but does not account for high wing intensities. On the other hand, the RC models show the sensitivity of Mg ii line intensities to various electron-beam parameters. Our simulations also show that the microturbulence produces a broader line core, while the intense line wings are caused by an enhanced line source function.


Flares, spectrum Flares, dynamics Radiative transfer 



The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007 – 2013) under grant agreement 606862 (F-CHROMA) and from ASI ASCR project RVO:67985815. L.K. was supported by a Marie-Curie Fellowship. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operation executed at the NASA Ames Research Center and major contributions to downlink communications funded by the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Asai, A., Ichimoto, K., Kita, R., Kurokawa, H., Shibata, K.: 2012, A study on red asymmetry of H\(\upalpha\) flare ribbons using a narrowband filtergram in the 2001 April 10 solar flare. Publ. Astron. Soc. Japan 64, 20.  DOI. ADS. CrossRefADSGoogle Scholar
  2. Avrett, E., Landi, E., McKillop, S.: 2013, Calculated resonance line profiles of [Mg ii], [C ii], and [Si iv] in the solar atmosphere. Astrophys. J. 779, 155.  DOI. ADS. CrossRefADSGoogle Scholar
  3. Avrett, E.H., Machado, M.E., Kurucz, R.L.: 1986, Chromospheric flare models. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, 216. ADS. Google Scholar
  4. Bocchialini, K., Gouttebroze, P.: 1996, Solar chromospheric structures as observed simultaneously in strong UV lines. II. Network and cell modelling. Astron. Astrophys. 313, 949. ADS. ADSGoogle Scholar
  5. Bonnet, J.: 1968, Recherches sur l’émission continue du Soelil entre 1950 & Aring et 3000 Å. Ann. Astrophys. 31, 597. ADS. ADSGoogle Scholar
  6. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., et al.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733.  DOI. ADS. CrossRefADSGoogle Scholar
  7. Deng, N., Tritschler, A., Jing, J., Chen, X., Liu, C., Reardon, K., Denker, C., Xu, Y., Wang, H.: 2013, High-cadence and high-resolution H\(\upalpha\) imaging spectroscopy of a circular flare’s remote ribbon with IBIS. Astrophys. J. 769, 112.  DOI. ADS. CrossRefADSGoogle Scholar
  8. Druckmüller, M., Klvaňa, M., Druckmüllerová, Z.: 2007, Solar spectra analysis based on the statistical moment method. Cent. Eur. Astrophys. Bull. 31, 297. ADS. ADSGoogle Scholar
  9. Fisher, G.H.: 1989, Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019.  DOI. ADS. CrossRefADSGoogle Scholar
  10. Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics – Part seven – Dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434.  DOI. ADS. CrossRefADSGoogle Scholar
  11. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497.  DOI. ADS. CrossRefADSGoogle Scholar
  12. Heinzel, P.: 1995, Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique. Astron. Astrophys. 299, 563. ADS. ADSGoogle Scholar
  13. Heinzel, P., Kleint, L.: 2014, Hydrogen Balmer continuum in solar flares detected by the Interface Region Imaging Spectrograph (IRIS). Astrophys. J. Lett. 794, L23.  DOI. ADS. CrossRefADSGoogle Scholar
  14. Heinzel, P., Vial, J.-C., Anzer, U.: 2014, On the formation of Mg ii h and k lines in solar prominences. Astron. Astrophys. 564, A132.  DOI. ADS. CrossRefADSGoogle Scholar
  15. Heinzel, P., Schmieder, B., Mein, N., Gunár, S.: 2015, Understanding the Mg ii and H\(\upalpha\) spectra in a highly dynamical solar prominence. Astrophys. J. Lett. 800, L13.  DOI. ADS. CrossRefADSGoogle Scholar
  16. Hubeny, I., Mihalas, D.: 2014, Theory of Stellar Atmospheres, Princeton University Press, Princeton. ADS. Google Scholar
  17. Ichimoto, K., Kurokawa, H.: 1984, H-alpha red asymmetry of solar flares. Solar Phys. 93, 105.  DOI. ADS. ADSGoogle Scholar
  18. Kašparová, J., Heinzel, P.: 2002, Diagnostics of electron bombardment in solar flares from hydrogen Balmer lines. Astron. Astrophys. 382, 688.  DOI. ADS. CrossRefADSGoogle Scholar
  19. Kerr, G.S., Simões, P.J.A., Qiu, J., Fletcher, L.: 2015, IRIS observations of the Mg ii h and k lines during a solar flare. Astron. Astrophys. 582, A50.  DOI. ADS. CrossRefADSGoogle Scholar
  20. Kleint, L., Battaglia, M., Reardon, K., Sainz Dalda, A., Young, P.R., Krucker, S.: 2015a, The fast filament eruption leading to the X-flare on 2014 March 29. Astrophys. J. 806, 9.  DOI. ADS. CrossRefADSGoogle Scholar
  21. Kleint, L., Heinzel, P., Judge, P., Krucker, S.: 2015b, Astrophys. J., in press Google Scholar
  22. Kohl, J.L., Parkinson, W.H.: 1976, The Mg ii h and k lines. I – Absolute center and limb measurements of the solar profiles. Astrophys. J. 205, 599.  DOI. ADS. CrossRefADSGoogle Scholar
  23. Leenaarts, J., Pereira, T.M.D., Carlsson, M., Uitenbroek, H., De Pontieu, B.: 2013, The formation of IRIS diagnostics. I. A quintessential model atom of Mg ii and general formation properties of the Mg ii h & k lines. Astrophys. J. 772, 89.  DOI. ADS. CrossRefADSGoogle Scholar
  24. Lemaire, P., Choucq-Bruston, M., Vial, J.-C.: 1984, Simultaneous H and K Ca ii, h and k Mg ii, L-alpha and L-beta H i profiles of the April 15, 1978 solar flare observed with the OSO-8/L.P.S.P. experiment. Solar Phys. 90, 63.  DOI. ADS. CrossRefADSGoogle Scholar
  25. Lemaire, P., Gouttebroze, P., Vial, J.C., Artzner, G.E.: 1981, Physical properties of the solar chromosphere deduced from optically thick lines. I – Observations, data reduction, and modelling of an average plage. Astron. Astrophys. 103, 160. ADS. ADSGoogle Scholar
  26. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3.  DOI. ADS. CrossRefADSGoogle Scholar
  27. Longcope, D.W.: 2014, A simple model of chromospheric evaporation and condensation driven conductively in a solar flare. Astrophys. J. 795, 10.  DOI. ADS. CrossRefADSGoogle Scholar
  28. Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W.: 1980, Semiempirical models of chromospheric flare regions. Astrophys. J. 242, 336.  DOI. ADS. CrossRefADSGoogle Scholar
  29. Milkey, R.W., Mihalas, D.: 1974, Resonance-line transfer with partial redistribution. II – The solar Mg ii lines. Astrophys. J. 192, 769.  DOI. ADS. CrossRefADSGoogle Scholar
  30. Morrill, J.S., Korendyke, C.M.: 2008, High-resolution center-to-limb variation of the quiet solar spectrum near Mg ii. Astrophys. J. 687, 646.  DOI. ADS. CrossRefADSGoogle Scholar
  31. Pereira, T.M.D., Leenaarts, J., De Pontieu, B., Carlsson, M., Uitenbroek, H.: 2013, The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images. Astrophys. J. 778, 143.  DOI. ADS. CrossRefADSGoogle Scholar
  32. Ricchiazzi, P.J., Canfield, R.C.: 1983, A static model of chromospheric heating in solar flares. Astrophys. J. 272, 739.  DOI. ADS. CrossRefADSGoogle Scholar
  33. Rybicki, G.B., Hummer, D.G.: 1991, An accelerated lambda iteration method for multilevel radiative transfer. I – Non-overlapping lines with background continuum. Astron. Astrophys. 245, 171. ADS. ADSGoogle Scholar
  34. Staath, E., Lemaire, P.: 1995, High resolution profiles of the Mg ii h and Mg ii k lines. Astron. Astrophys. 295, 517. ADS. ADSGoogle Scholar
  35. Švestka, Z., Kopecký, M., Blaha, M.: 1962, Qualitative discussion of 244 flare spectra. II. Line asymmetry and helium lines. Bull. Astron. Inst. Czechoslov. 13, 37. ADS. ADSGoogle Scholar
  36. Tang, F.: 1983, Flare asymmetry as seen in offband H-alpha filtergrams. Solar Phys. 83, 15.  DOI. ADS. CrossRefADSGoogle Scholar
  37. Uitenbroek, H.: 1997, The solar Mg ii h and k lines – observations and radiative transfer modeling. Solar Phys. 172, 109.  DOI. ADS. CrossRefADSGoogle Scholar
  38. Varady, M., Kasparova, J., Moravec, Z., Heinzel, P., Karlicky, M.: 2010, Modeling of solar flare plasma and its radiation. IEEE Trans. Plasma Sci. 38, 2249.  DOI. ADS. CrossRefADSGoogle Scholar
  39. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635.  DOI. ADS. CrossRefADSGoogle Scholar
  40. Young, P.R., Tian, H., Jaeggli, S.: 2015, The 2014 March 29 X-flare: subarcsecond resolution observations of Fe XXI \(\lambda\)1354.1. Astrophys. J. 799, 218.  DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Astronomical InstituteThe Czech Academy of SciencesOndřejovCzech Republic
  2. 2.University of Applied Sciences and Arts Northwestern SwitzerlandWindischSwitzerland

Personalised recommendations