Solar Physics

, Volume 291, Issue 1, pp 117–142 | Cite as

A Comparison of Global Magnetic Field Skeletons and Active-Region Upflows

  • S. J. Edwards
  • C. E. Parnell
  • L. K. Harra
  • J. L. Culhane
  • D. H. Brooks


Plasma upflows have been detected in active regions using Doppler velocity maps. The origin and nature of these upflows is not well known with many of their characteristics determined from the examination of single events. In particular, some studies suggest these upflows occur along open field lines and, hence, are linked to sources of the solar wind. To investigate the relationship these upflows may have with the solar wind, and to probe what may be driving them, this paper considers seven active regions observed on the solar disc using the Extreme ultraviolet Imaging Spectrometer aboard Hinode between August 2011 and September 2012. Plasma upflows are observed in all these active regions. The locations of these upflows are compared to the global potential magnetic field extrapolated from the Solar Dynamics Observatory, Helioseismic and Magnetic Imager daily synoptic magnetogram taken on the day the upflows were observed. The structure of the magnetic field is determined by constructing its magnetic skeleton in order to help identify open-field regions and also sites where magnetic reconnection at global features is likely to occur. As a further comparison, measurements of the temperature, density and composition of the plasma are taken from regions with active-region upflows. In most cases the locations of the upflows in the active regions do not correspond to areas of open field, as predicted by a global coronal potential-field model, and therefore these upflows are not always sources of the slow solar wind. The locations of the upflows are, in general, intersected by separatrix surfaces associated with null points located high in the corona; these could be important sites of reconnection with global consequences.


Magnetic fields, corona Solar wind 



S.J. Edwards acknowledges the financial support of the Isle of Man Government during her Ph.D. and the support of the STFC. C.E. Parnell acknowledges the support of the St. Andrews SMTG’s STFC consolidated grant. The work of DHB was performed under contract with the Naval Research Laboratory and was funded by the NASA Hinode program. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. The Hinode science team organised at ISAS/JAXA conducts the scientific operation of Hinode mission: this team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. The research leading to these results has received funding from the European Commission’s Seventh Framework Programme under the grant agreement No. 284461 (eHEROES project).


  1. Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Brooks, D.H., Warren, H.P.: 2011, Establishing a connection between active region outflows and the solar wind: Abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727, L13.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Brooks, D.H., Warren, H.P.: 2012, The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows. Astrophys. J. Lett. 760, L5.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bryans, P., Young, P.R., Doschek, G.A.: 2010, Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., Démoulin, P., Baker, D., DeRosa, M.L., Mandrini, C.H., Zhao, L., Zurbuchen, T.H.: 2014, Tracking solar active region outflow plasma from its source to the near-Earth environment. Solar Phys. 289, 3799.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating – In the chromosphere. Astrophys. J. Lett. 701, L1.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: 2011, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137.  DOI. ADS. CrossRefGoogle Scholar
  9. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – An atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: A tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Edwards, S.J.: 2014, On the topology of global coronal magnetic fields. Ph.D. thesis, University of St. Andrews. Google Scholar
  12. Grevesse, N., Asplund, M., Sauval, A.J.: 2007, The solar chemical composition. Space Sci. Rev. 130, 105.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The Transition Region and Coronal Explorer. Solar Phys. 187, 229.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A.: 2008, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678, L67.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: Contribution to solar wind formation? Astrophys. J. Lett. 676, L147.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Harra, L.K., Archontis, V., Pedram, E., Hood, A.W., Shelton, D.L., van Driel-Gesztelyi, L.: 2012, The creation of outflowing plasma in the corona at emerging flux regions: Comparing observations and simulations. Solar Phys. 278, 47.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Haynes, A.L., Parnell, C.E.: 2007, A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14, 082107.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Haynes, A.L., Parnell, C.E.: 2010, A method for finding three-dimensional magnetic skeletons. Phys. Plasmas 17, 092903.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. He, J.-S., Marsch, E., Tu, C.-Y., Guo, L.-J., Tian, H.: 2010, Intermittent outflows at the edge of an active region – A possible source of the solar wind? Astron. Astrophys. 516, A14.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kashyap, V., Drake, J.J.: 1998, Markov-chain Monte Carlo reconstruction of emission measure distributions: Application to solar extreme-ultraviolet spectra. Astrophys. J. 503, 450.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Kashyap, V., Drake, J.J.: 2000, PINTofALE: Package for the interactive analysis of line emission. Bull. Astron. Soc. India 28, 475. ADS. ADSGoogle Scholar
  23. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Laming, J.M.: 2015, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Solar Phys. 12, 2.  DOI. ADSCrossRefGoogle Scholar
  25. Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E.: 2012, CHIANTI – An atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 744, 99.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Mackay, D., Yeates, A.: 2012, The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev. Solar Phys. 9(6).  DOI. ADS.
  28. Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D.: 2014, Topological analysis of emerging bipole clusters producing violent solar events. Solar Phys. 289, 2041.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Platten, S.J., Parnell, C.E., Haynes, A.L., Priest, E.R., Mackay, D.H.: 2014, The solar cycle variation of topological structures in the global solar corona. Astron. Astrophys. 565, A44.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Slemzin, V., Harra, L., Urnov, A., Kuzin, S., Goryaev, F., Berghmans, D.: 2013, Signatures of slow solar wind streams from active regions in the inner corona. Solar Phys. 286, 157.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Ugarte-Urra, I., Warren, H.P.: 2011, Temporal variability of active region outflows. Astrophys. J. 730, 37.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. van Ballegooijen, A.A., Cartledge, N.P., Priest, E.R.: 1998, Magnetic flux transport and the formation of filament channels on the Sun. Astrophys. J. 501, 866.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: Implications for coronal outflows and the solar wind. Solar Phys. 281, 237.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Wang, Y.-M., Young, P.R., Muglach, K.: 2014, Evidence for two separate heliospheric current sheets of cylindrical shape during mid-2012. Astrophys. J. 780, 103.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G.: 2011, The temperature dependence of solar active region outflows. Astrophys. J. 727, 58.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Hassler, D.M., Siegmund, O.H.W.: 1995, SUMER – Solar ultraviolet measurements of emitted radiation. Solar Phys. 162, 189.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • S. J. Edwards
    • 1
    • 2
  • C. E. Parnell
    • 2
  • L. K. Harra
    • 3
  • J. L. Culhane
    • 3
  • D. H. Brooks
    • 4
    • 5
  1. 1.Department of Mathematical SciencesUniversity of DurhamDurhamUK
  2. 2.School of Mathematics & StatisticsUniversity of St. AndrewsSt. Andrews, FifeUK
  3. 3.UCL-Mullard Space Science LaboratoryDorkingUK
  4. 4.College of ScienceGeorge Mason UniversityFairfaxUSA
  5. 5.ISAS/JAXASagamiharaJapan

Personalised recommendations