Solar Physics

, Volume 291, Issue 1, pp 303–315 | Cite as

On the Current Solar Magnetic Activity in the Light of Its Behaviour During the Holocene

  • F. Inceoglu
  • R. Simoniello
  • M. F. Knudsen
  • C. Karoff
  • J. Olsen
  • S. Turck-Chièze


Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene period. We aim at comparing the Sun’s large-scale magnetic field behaviour over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 14C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun’s large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that \({\approx}\,71\ \%\) of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The characteristics of the occurrences of grand maxima and minima are consistent with the scenario in which the dynamical non-linearity induced by the Lorentz force leads the Sun to act as a relaxation oscillator. This finding implies that the probability for these events to occur is non-uniformly distributed in time, as there is a memory in their driving mechanism, which can be identified via the back-reaction of the Lorentz force.


Magnetic fields, models Solar cycle, models Sun, activity Sun, dynamo 



Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant agreement no.: DNRF106). FI acknowledges M. DeRosa for providing his code for calculations of the energy in the large-scale dipole magnetic field of the Sun. RS acknowledges the support from the PiCARD collaboration. MFK, CK and JO acknowledge support from the Carlsberg Foundation and Villum Foundation. We would like to thank T. Hoeksema for free access to the WSO information.


  1. Abreu, J.A., Beer, J., Ferriz-Mas, A.: 2010, In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum, ASP Conf. Ser. 428, 287. Google Scholar
  2. Abreu, J.A., Beer, J., Steinhilber, F., Tobias, S.M., Weiss, N.O.: 2008, Geophys. Res. Lett. 35, 20109. ADSCrossRefGoogle Scholar
  3. Akaike, H.: 1974, IEEE Trans. Autom. Control AC–19, 6. Google Scholar
  4. Arlt, R.: 2009, Solar Phys. 255, 143. ADSCrossRefGoogle Scholar
  5. Burnham, K.P., Anderson, D.R.: 2002, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, New York, 61. Google Scholar
  6. Corsaro, E., Fröhlich, H.-E., Bonanno, A., Huber, D., Bedding, T.R., Benomar, O., De Ridder, J., Stello, D.: 2013, Mon. Not. Roy. Astron. Soc. 430, 2313. ADSCrossRefGoogle Scholar
  7. DeRosa, M.L., Brun, A.S., Hoeksema, J.T.: 2012, Astrophys. J. 757, 96. ADSCrossRefGoogle Scholar
  8. Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: 2004, Astrophys. J. 601, 1136. ADSCrossRefGoogle Scholar
  9. Dunai, T.J.: 2010, Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, Cambridge, 2. CrossRefGoogle Scholar
  10. Hoeksema, J.T.: 2010, In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symp. 264, 222. Google Scholar
  11. Howard, R., Labonte, B.J.: 1980, Astrophys. J. Lett. 239, L33. ADSCrossRefGoogle Scholar
  12. Inceoglu, F., Simoniello, R., Knudsen, M.F., Karoff, C., Olsen, J., Turck-Chiéze, S., Jacobsen, B.H.: 2015, Astron. Astrophys. 577, A20. ADSCrossRefGoogle Scholar
  13. Kass, R., Raftery, A.: 1995, J. Am. Stat. Assoc. 90, 773. CrossRefzbMATHGoogle Scholar
  14. Lal, D., Peters, B.: 1967, In: Kitte, S. (ed.) Cosmic Rays II, Handbuch der Physik 46, 551. Google Scholar
  15. Lean, J.L., Wang, Y.-M., Sheeley, N.R. Jr.: 2002, Geophys. Res. Lett. 29, 2224. ADSCrossRefGoogle Scholar
  16. Li, K.J., Chen, H.D., Zhan, L.S., Li, Q.X., Gao, P.X., Mu, J., Shi, X.J., Zhu, W.W.: 2009, J. Geophys. Res. 114, A04101. ADSGoogle Scholar
  17. Malkus, W.V.R., Proctor, M.R.E.: 1975, J. Fluid Mech. 67, 417. ADSCrossRefzbMATHGoogle Scholar
  18. Moss, D., Sokoloff, D., Usoskin, I., Tutubalin, V.: 2008, Solar Phys. 250, 221. ADSCrossRefGoogle Scholar
  19. Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Astrophys. J. Lett. 767, L25. ADSCrossRefGoogle Scholar
  20. Neath, A.A., Cavanaugh, J.E.: 2012, Wiley Interdiscip. Rev. Comput. Stat. 4, 199. CrossRefGoogle Scholar
  21. Owens, M.J., Lockwood, M., Barnard, L., Davis, C.J.: 2011, Geophys. Res. Lett. 38, 19106. ADSCrossRefGoogle Scholar
  22. Potgieter, M.: 2013, Living Rev. Solar Phys. 10(3).
  23. Ribes, J.C., Nesme-Ribes, E.: 1993, Astron. Astrophys. 276, 549. ADSGoogle Scholar
  24. Richardson, I.G.: 2013, J. Space Weather Space Clim. 3, A8. CrossRefGoogle Scholar
  25. Rigozo, N.R., Echer, E., Vieira, L.E.A., Nordemann, D.J.R.: 2001, Solar Phys. 203, 179. ADSCrossRefGoogle Scholar
  26. Roth, R., Joos, F.: 2013, Clim. Past 9, 1879. CrossRefGoogle Scholar
  27. Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L. Jr., Dittmer, P.H., Gustafson, E.K.: 1977, Solar Phys. 54, 353. ADSCrossRefGoogle Scholar
  28. Schwarz, G.: 1978, Ann. Stat. 6, 461. CrossRefzbMATHGoogle Scholar
  29. Simoniello, R., Jain, K., Tripathy, S.C., Baldner, C.S., Turck-Chièze, S., Hill, F.: 2013b, In: Jain, K., Tripathy, S.C., Hill, F., Leibacher, J.W., Pevtsov, A.A. (eds.) Fifty Years of Seismology of the Sun and Stars, ASP Conf. Ser. 478, 167. Google Scholar
  30. Simoniello, R., Jain, K., Tripathy, S.C., Turck-Chièze, S., Baldner, C., Finsterle, W., Hill, F., Roth, M.: 2013a, Astrophys. J. 765, 100. ADSCrossRefGoogle Scholar
  31. Suess, H.E.: 1955, Science 122, 415. ADSCrossRefGoogle Scholar
  32. Tobias, S.M.: 1996, Astron. Astrophys. 307, L21. ADSGoogle Scholar
  33. Tobias, S.M.: 1997, Astron. Astrophys. 322, 1007. ADSGoogle Scholar
  34. Tobias, S.M., Weiss, N.O., Kirk, V.: 1995, Mon. Not. Roy. Astron. Soc. 273, 1150. ADSCrossRefGoogle Scholar
  35. Upton, L., Hathaway, D.H.: 2014, Astrophys. J. 780, 5. ADSCrossRefGoogle Scholar
  36. Usoskin, I.G.: 2013, Living Rev. Solar Phys. 10(1).
  37. Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, J. Geophys. Res. 116, A02104. ADSGoogle Scholar
  38. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Astron. Astrophys. 471, 301. ADSCrossRefGoogle Scholar
  39. Usoskin, I.G., Mursula, K., Arlt, R., Kovaltsov, G.A.: 2009, Astrophys. J. Lett. 700, L154. ADSCrossRefGoogle Scholar
  40. Vaquero, J.M., Sánchez-Bajo, F., Gallego, M.C.: 2002, Solar Phys. 207, 219. ADSCrossRefGoogle Scholar
  41. Wang, Y.-M.: 2004, Solar Phys. 224, 21. ADSCrossRefGoogle Scholar
  42. Wang, Y.-M., Colaninno, R.: 2014, Astrophys. J. Lett. 784, L27. ADSCrossRefGoogle Scholar
  43. Wheatland, M.S., Sturrock, P.A., McTiernan, J.M.: 1998, Astrophys. J. 509, 448. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • F. Inceoglu
    • 1
    • 3
  • R. Simoniello
    • 2
  • M. F. Knudsen
    • 3
  • C. Karoff
    • 1
    • 3
  • J. Olsen
    • 4
  • S. Turck-Chièze
    • 2
  1. 1.Stellar Astrophysics Centre, Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SApCentre de SaclayGif-sur-YvetteFrance
  3. 3.Department of GeoscienceAarhus UniversityAarhus CDenmark
  4. 4.AMS, 14C Dating Centre, Department of PhysicsAarhus UniversityAarhus CDenmark

Personalised recommendations