Solar Physics

, Volume 290, Issue 10, pp 2791–2808 | Cite as

Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models

  • S. J. Edwards
  • A. R. Yeates
  • F.-X. Bocquet
  • D. H. Mackay


By comparing a magneto-frictional model of the low-coronal magnetic-field to a potential-field source-surface model, we investigate the possible impact of non-potential magnetic structure on empirical solar-wind models. These empirical models (such as Wang–Sheeley–Arge) estimate the distribution of solar-wind speed solely from the magnetic-field structure in the low corona. Our models are computed in a domain between the solar surface and 2.5 solar radii, and they are extended to 0.1 AU using a Schatten current-sheet model. The non-potential field has a more complex magnetic skeleton and quasi-separatrix structures than the potential field, leading to different sub-structure in the solar-wind speed proxies. It contains twisted magnetic structures that can perturb the separatrix surfaces traced down from the base of the heliospheric current sheet. A significant difference between the models is the greater amount of open magnetic flux in the non-potential model. Using existing empirical formulae this leads to higher predicted wind speeds for two reasons: partly because magnetic-flux tubes expand less rapidly with height, but more importantly because more open-field lines are further from coronal-hole boundaries.


Corona, models Magnetic fields, corona Magnetic fields, interplanetary Magnetic fields, models Solar wind, theory 



A.R. Yeates and S.J. Edwards were supported by STFC through consortium grant ST/K001043/1 and the Durham University Impact Acceleration Account, as well as by the US Air Force Office for Scientific Research. D.H. Mackay would like to thank the Leverhulme Trust and STFC for financial support. The authors thank Andrew L. Haynes for the use of his separatrix surface and null-point finding codes. Numerical simulations used the SRIF and STFC funded HPC cluster at the University of St Andrews.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2015_795_MOESM1_ESM.mp4 (12.1 mb)
(MP4 12.1 MB)
11207_2015_795_MOESM2_ESM.mp4 (11.6 mb)
(MP4 11.6 MB)
11207_2015_795_MOESM3_ESM.mp4 (10.8 mb)
(MP4 10.8 MB)
11207_2015_795_MOESM4_ESM.mp4 (9.9 mb)
(MP4 9.9 MB)


  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131.  DOI. ADS. CrossRefADSGoogle Scholar
  2. Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112.  DOI. ADS. CrossRefADSGoogle Scholar
  3. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465.  DOI. ADS. CrossRefADSGoogle Scholar
  4. Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Amer. Inst. Phys., 190.  DOI. ADS.
  5. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295.  DOI. ADS. CrossRefADSGoogle Scholar
  6. Cook, G.R., Mackay, D.H., Nandy, D.: 2009, Solar cycle variations of coronal null points: implications for the magnetic breakout model of coronal mass ejections. Astrophys. J. 704, 1021.  DOI. ADS. CrossRefADSGoogle Scholar
  7. Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451.  DOI. ADS. CrossRefADSGoogle Scholar
  8. Crooker, N.U., McPherron, R.L., Owens, M.J.: 2014, Comparison of interplanetary signatures of streamers and pseudostreamers. J. Geophys. Res. 119, 4157.  DOI. ADS. CrossRefGoogle Scholar
  9. Crooker, N.U., Antiochos, S.K., Zhao, X., Neugebauer, M.: 2012, Global network of slow solar wind. J. Geophys. Res. 117, 4104.  DOI. ADS. Google Scholar
  10. Edwards, S.J., Parnell, C.E.: 2015, Null point distribution in global coronal potential field extrapolations. Solar Phys. 290, 2055.  DOI. ADS. CrossRefADSGoogle Scholar
  11. Edwards, S.J., Parnell, C.E., Harra, L.K., Culhane, J.L., Brooks, D.H.: 2015, A comparison of global magnetic field skeletons and active region upflows. Solar Phys. (in press). Google Scholar
  12. Freed, M.S., Longcope, D.W., McKenzie, D.E.: 2015, Three-year global survey of coronal null points from Potential-Field-Source-Surface (PFSS) modeling and Solar Dynamics Observatory (SDO) observations. Solar Phys. 290, 467.  DOI. ADS. CrossRefADSGoogle Scholar
  13. Haynes, A.L., Parnell, C.E.: 2007, A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14(8), 082107.  DOI. ADS. CrossRefADSGoogle Scholar
  14. Haynes, A.L., Parnell, C.E.: 2010, A method for finding three-dimensional magnetic skeletons. Phys. Plasmas 17(9), 092903.  DOI. ADS. CrossRefADSGoogle Scholar
  15. Hudson, H.S., Svalgaard, L., Hannah, I.G.: 2014, Solar sector structure. Space Sci. Rev. 186, 17.  DOI. ADS. CrossRefADSGoogle Scholar
  16. Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Living Rev. Solar Phys. 2, 7.  DOI. ADS. CrossRefADSGoogle Scholar
  17. Mackay, D., Yeates, A.: 2012, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 9, 6.  DOI. ADS. CrossRefADSGoogle Scholar
  18. Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497.  DOI. ADS. CrossRefADSGoogle Scholar
  19. Parnell, C.E., Maclean, R.C., Haynes, A.L.: 2010, The detection of numerous magnetic separators in a three-dimensional magnetohydrodynamic model of solar emerging flux. Astrophys. J. Lett. 725, L214.  DOI. ADS. CrossRefADSGoogle Scholar
  20. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759.  DOI. ADS. CrossRefADSGoogle Scholar
  21. Platten, S.J., Parnell, C.E., Haynes, A.L., Priest, E.R., Mackay, D.H.: 2014, The solar cycle variation of topological structures in the global solar corona. Astron. Astrophys. 565, A44.  DOI. ADS. CrossRefADSGoogle Scholar
  22. Poduval, B., Zhao, X.P.: 2014, Validating solar wind prediction using the current sheet source surface model. Astrophys. J. Lett. 782, L22.  DOI. ADS. CrossRefADSGoogle Scholar
  23. Priest, E.R., Titov, V.S.: 1996, Magnetic reconnection at three-dimensional null points. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 354, 2951. ADS. MathSciNetADSzbMATHGoogle Scholar
  24. Rachmeler, L.A., Platten, S.J., Bethge, C., Seaton, D.B., Yeates, A.R.: 2014, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett. 787, L3.  DOI. ADS. CrossRefADSGoogle Scholar
  25. Riley, P., Linker, J.A., Arge, C.N.: 2015, On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13, 154.  DOI. ADS. CrossRefADSGoogle Scholar
  26. Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889.  DOI. ADS. CrossRefADSGoogle Scholar
  27. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510.  DOI. ADS. CrossRefADSGoogle Scholar
  28. Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys. 274, 361.  DOI. ADS. CrossRefADSGoogle Scholar
  29. Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769.  DOI. ADS. CrossRefADSGoogle Scholar
  30. Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232. ADS. ADSGoogle Scholar
  31. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.  DOI. ADS. CrossRefADSGoogle Scholar
  32. Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev. Solar Phys. 2, 5.  DOI. ADS. CrossRefADSGoogle Scholar
  33. Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the South polar cap at solar maximum: heliospheric magnetic field. Geophys. Res. Lett. 28, 4159.  DOI. ADS. CrossRefADSGoogle Scholar
  34. Tadesse, T., Pevtsov, A.A., Wiegelmann, T., MacNeice, P.J., Gosain, S.: 2014, Global solar free magnetic energy and electric current density distribution of Carrington rotation 2124. Solar Phys. 289, 4031.  DOI. ADS. CrossRefADSGoogle Scholar
  35. Titov, V.S.: 2007, Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863.  DOI. ADS. CrossRefADSGoogle Scholar
  36. Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164.  DOI. ADS. CrossRefGoogle Scholar
  37. Titov, V.S., Mikić, Z., Linker, J.A., Lionello, R., Antiochos, S.K.: 2011, Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111.  DOI. ADS. CrossRefADSGoogle Scholar
  38. van Ballegooijen, A.A., Cranmer, S.R.: 2008, Hyperdiffusion as a mechanism for solar coronal heating. Astrophys. J. 682, 644.  DOI. ADS. CrossRefADSGoogle Scholar
  39. van Ballegooijen, A.A., Priest, E.R., Mackay, D.H.: 2000, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983.  DOI. ADS. CrossRefADSGoogle Scholar
  40. van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281, 237.  DOI. ADS. CrossRefADSGoogle Scholar
  41. Wang, Y.-M.: 2009, Coronal holes and open magnetic flux. Space Sci. Rev. 144, 383.  DOI. ADS. CrossRefADSGoogle Scholar
  42. Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.  DOI. ADS. CrossRefADSGoogle Scholar
  43. Wang, Y.-M., Young, P.R., Muglach, K.: 2014, Evidence for two separate heliospheric current sheets of cylindrical shape during mid-2012. Astrophys. J. 780, 103.  DOI. ADS. CrossRefADSGoogle Scholar
  44. Yang, W.H., Sturrock, P.A., Antiochos, S.K.: 1986, Force-free magnetic fields – the magneto-frictional method. Astrophys. J. 309, 383.  DOI. ADS. CrossRefADSGoogle Scholar
  45. Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Solar Phys. 289, 631.  DOI. ADS. CrossRefADSGoogle Scholar
  46. Yeates, A.R., Mackay, D.H.: 2012, Chirality of high-latitude filaments over solar cycle 23. Astrophys. J. Lett. 753, L34.  DOI. ADS. CrossRefADSGoogle Scholar
  47. Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Evolution and distribution of current helicity in full-Sun simulations. Astrophys. J. Lett. 680, L165.  DOI. ADS. CrossRefADSGoogle Scholar
  48. Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A., Constable, J.A.: 2010, A nonpotential model for the Sun’s open magnetic flux. J. Geophys. Res. 115, 9112.  DOI. ADS. CrossRefGoogle Scholar
  49. Zhao, X., Hoeksema, J.T.: 1995, Predicting the heliospheric magnetic field using the current sheet-source surface model. Adv. Space Res. 16, 181.  DOI. ADS. CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • S. J. Edwards
    • 1
  • A. R. Yeates
    • 1
  • F.-X. Bocquet
    • 2
  • D. H. Mackay
    • 3
  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.Met OfficeExeterUK
  3. 3.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK

Personalised recommendations