Advertisement

Solar Physics

, Volume 290, Issue 9, pp 2491–2505 | Cite as

Relationship Between Solar-Wind Speed and Coronal Magnetic-Field Properties

  • Ken’ichi Fujiki
  • Munetoshi Tokumaru
  • Tomoya Iju
  • Kazuyuki Hakamada
  • Masayoshi Kojima
Radio Heliophysics: Science and Forecasting

Abstract

We have studied the relationship between the solar-wind speed \([V]\) and the coronal magnetic-field properties (a flux-expansion factor [\(f\)] and photospheric magnetic-field strength [\(B_{\mathrm{S}}\)]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that \(V\) is inversely proportional to \(f\) and found that \(V\) tends to increase with \(B_{\mathrm{S}}\) if \(f\) is the same. As a consequence, we find that \(V\) has an extremely good linear correlation with \(B_{\mathrm{S}}/f\). However, this linear relation of \(V\) and \(B_{\mathrm{S}}/f\) cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between \(V\) and \(f\) has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind acceleration.

Keywords

Solar Wind Radio Scintillation Corona Coronal Holes Magnetic fields Photosphere 

Notes

Acknowledgements

The IPS observations were carried out under the solar-wind program of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University, and were partially supported by the IUGONET Project of MEXT, Japan. The authors would like to express their thanks for the use of the NSO/Kitt Peak magnetogram data. They are also indebted to the NASA/GSFC’s Space Physics Data Facility’s OMNIweb service, and OMNI data. This work was carried out by the joint research program of the STEL, Nagoya University, and was also partially supported by the JSPS Grant-in-Aid for Scientific Research A (25257079).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys. 9, 131.  DOI. CrossRefADSGoogle Scholar
  2. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465.  DOI. CrossRefADSGoogle Scholar
  3. Fisk, L.A.: 2003, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157.  DOI. CrossRefGoogle Scholar
  4. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1999, Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765.  DOI. CrossRefADSGoogle Scholar
  5. Hakamada, K., Kojima, M.: 1999, Solar wind speed and expansion rate of the coronal magnetic field during Carrington Rotation 1909. Solar Phys. 187, 115.  DOI. CrossRefADSGoogle Scholar
  6. Hirano, M., Kojima, M., Tokumaru, M., Fujiki, K., Ohmi, T., Yamashita, M., Hakamada, K., Hayashi, K.: 2003, The relation between the solar wind velocity and the magnetic conditions of coronal holes. In: AGU Fall Meeting Abstracts. B164. Google Scholar
  7. Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173.  DOI. CrossRefADSGoogle Scholar
  8. Kojima, M., Tokumaru, M., Watanabe, H., Yokobe, A., Asai, K., Jackson, B.V., Hick, P.L.: 1998, Heliospheric tomography using interplanetary scintillation observations 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1 – 1 AU. J. Geophys. Res. 103, 1981.  DOI. CrossRefADSGoogle Scholar
  9. Kojima, M., Fujiki, K., Hirano, M., Tokumaru, M., Ohmi, T., Hakamada, K.: 2004, Solar wind properties from IPS observations. In: Poletto, G., Suess, S.T. (eds.) The Sun and the Heliosphere as an Integrated System, Astrophys. Space Science Lib. 317, Springer, Heidelberg 147. CrossRefGoogle Scholar
  10. Kojima, M., Tokumaru, M., Fujiki, K., Itoh, H., Murakami, T., Hakamada, K.: 2007, What coronal parameters determine solar wind speed? In: Shibata, K., Nagata, S., Sakurai, T. (eds.) New Solar Physics with Solar-B Mission 369, Astron. Soc. Pacific, San Francisco 549. Google Scholar
  11. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103.  DOI. CrossRefADSGoogle Scholar
  12. Ohmi, T., Kojima, M., Yokobe, A., Tokumaru, M., Fujiki, K., Hakamada, K.: 2001, Polar low-speed solar wind at the solar activity maximum. J. Geophys. Res. 106, 24923.  DOI. CrossRefADSGoogle Scholar
  13. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.  DOI. CrossRefADSGoogle Scholar
  14. Suzuki, T.K.: 2006, Forecasting solar wind speeds. Astrophys. J. Lett. 640, L75.  DOI. CrossRefADSGoogle Scholar
  15. Suzuki, T.K., Inutsuka, S.-i.: 2005, Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, L49.  DOI. CrossRefADSGoogle Scholar
  16. Tokumaru, M., Kojima, M., Fujiki, K., Hayashi, K.: 2009, Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys. Res. Lett. 36, 9101.  DOI. CrossRefADSGoogle Scholar
  17. von Steiger, R., Zurbuchen, T.H.: 2011, Polar coronal holes during the past solar cycle: Ulysses observations. J. Geophys. Res. 116, 1105.  DOI. CrossRefGoogle Scholar
  18. Wang, Y.-M.: 2010, On the relative constancy of the solar wind mass flux at 1 AU. Astrophys. J. Lett. 715, L121.  DOI. CrossRefADSGoogle Scholar
  19. Wang, Y.-M., Hawley, S.H., Sheeley, N.R. Jr.: 1996, The magnetic nature of coronal holes. Science 271, 464.  DOI. CrossRefADSGoogle Scholar
  20. Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, on the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372.  DOI. CrossRefADSGoogle Scholar
  21. Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.  DOI. CrossRefADSGoogle Scholar
  22. Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys. J. Lett. 372, L45.  DOI. CrossRefADSGoogle Scholar
  23. Wang, Y.-M., Sheeley, N.R. Jr.: 2013, The solar wind and interplanetary field during very low amplitude sunspot cycles. Astrophys. J. 764, 90.  DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ken’ichi Fujiki
    • 1
  • Munetoshi Tokumaru
    • 1
  • Tomoya Iju
    • 1
  • Kazuyuki Hakamada
    • 2
  • Masayoshi Kojima
    • 1
  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  2. 2.Department of Natural Science and MathematicsChubu UniversityKasugaiJapan

Personalised recommendations