Advertisement

Solar Physics

, Volume 290, Issue 7, pp 1897–1907 | Cite as

Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure

  • R. T. James McAteer
Article

Abstract

The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare Ampère’s law to the wavelet-transform modulus maximum method. The Hölder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially powerful tool for a statistical prediction of solar-flare activity. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with high current densities at large size scales will be the source of energy storage for solar eruptive events.

Keywords

Flares, Dynamics Helicity, Magnetic Magnetic fields, Corona 

Notes

Acknowledgement

This work was supported by National Science Foundation Career award NSS AGS-1255024 and NASA contract NNH12CG10C. The author thanks the referee for useful insight and several very useful references.

Disclosure of Potential Conflicts of Interest

The author declares he has no conflict of interest.

References

  1. Abramenko, V.I.: 2005, Multifractal analysis of solar magnetograms. Solar Phys. 228, 29. ADS.  DOI. CrossRefADSGoogle Scholar
  2. Abramenko, V.I., Yurchyshyn, V.B.: 2010, Intermittency and multifractality spectra of the magnetic field in solar active regions. Astrophys. J. 722, 122. CrossRefADSGoogle Scholar
  3. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2010, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. CrossRefADSGoogle Scholar
  4. Charon, N., Trouvé, A.: 2013, A new mathematical tool to model and analyse functional shapes. J. Math. Imaging Vis. 48, 413. CrossRefGoogle Scholar
  5. Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., et al.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297. ADS.  DOI. CrossRefADSGoogle Scholar
  6. Conlon, P.A., McAteer, R.T.J., Gallagher, P.T., Fennell, L.: 2010, Quantifying the evolving magnetic structure of active regions. Astrophys. J. 722, 577. CrossRefADSGoogle Scholar
  7. De Rosa, M.L., Schrijver, C.J., Graham, G., Leka, K.D., Lites, B., Aschwanden, M.J.: 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10 953. Astrophys. J. 696, 1780. CrossRefADSGoogle Scholar
  8. Georgoulis, M.K.: 2013, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15, 5022. CrossRefADSGoogle Scholar
  9. Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506. CrossRefADSGoogle Scholar
  10. Hewett, R.J., Gallagher, P.T., McAteer, R.T.J.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311. ADS.  DOI. CrossRefADSGoogle Scholar
  11. Ireland, J., Young, C.A., McAteer, R.T.J., Whelan, C., Hewett, R.J., Gallagher, P.T.: 2008, Multiresolution analysis of active region magnetic structure and its correlation with the Mount Wilson classification and flaring activity. Solar Phys. 252, 121. ADS.  DOI. CrossRefADSGoogle Scholar
  12. Kestener, P., Conlon, P.A., Khalil, A., Fennell, L., McAteer, R.T.J., Gallagher, P.T., Arneodo, A.: 2010, Characterizing complexity in solar magnetogram data using a wavelet-based segmentation method. Astrophys. J. 717, 995. CrossRefADSGoogle Scholar
  13. Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173. CrossRefADSGoogle Scholar
  14. Leka, K.D., Barnes, G.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. CrossRefADSGoogle Scholar
  15. Leonarduzzi, R., Wendt, H., Jaffard, S., Roux, S.G., Torres, M.E., Abry, P.: 2014, Extending multifractal analysis to negative regularity: P-exponents and P-leaders. In: IEEE Internat. Conf. Acoustics, Speech Signal Processing (ICASSP), 305.  DOI. Google Scholar
  16. Makarenko, N.G., Karimovab, L.M., Kozelovc, B.V., Novakd, M.M.: 2012, Multifractal analysis on Choquet capacity: application to solar magnetograms. Physica A 391, 4290. CrossRefADSGoogle Scholar
  17. McAteer, R.T.J.: 2013, SOC and fractal geometry. In: Aschwanden, M.A. (ed.) Self Organized Criticality Systems, 73. www.openacademicpress.de/ojs2/index.php/socs. Google Scholar
  18. McAteer, R.T.J., Bloomfield, D.S.: 2013, The bursty nature of solar flare X-ray emission. II. The Neupert effect. Astrophys. J. 776, 66. CrossRefADSGoogle Scholar
  19. McAteer, R.T.J., Gallagher, P.T., Conlon, P.A.: 2010, Turbulence, complexity, and solar flares. Adv. Space Res. 45, 1067. CrossRefADSGoogle Scholar
  20. McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J. 631, 628. CrossRefADSGoogle Scholar
  21. McAteer, R.T.J., Young, C.A., Ireland, J., Gallagher, P.T.: 2007, The bursty nature of solar flare X-ray emission. Astrophys. J. 662, 691. CrossRefADSGoogle Scholar
  22. McAteer, R.T.J., Kestener, P., Arneodo, A., Khalil, A.: 2010, Automated detection of coronal loops using a wavelet transform modulus maxima method. Solar Phys. 262, 387. ADS.  DOI. CrossRefADSGoogle Scholar
  23. McAteer, R.T.J., Aschwanden, M.J., Dimitropoulou, M., Georgoulis, M.K., Pruessner, G., Morales, L., et al.: 2015, 25 years of self-organized criticality: numerical detection methods. Space Sci. Rev.  DOI. Google Scholar
  24. Muzy, J.F., Bacry, E., Arneodo, A.: 1991, Wavelets and multifractal formalism for singular signals. Phys. Rev. Lett. 67, 3515. CrossRefADSGoogle Scholar
  25. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. CrossRefADSGoogle Scholar
  26. Turiel, A., Yahia, H., Pérez-Vicente, C.J.: 2008, Microcanonical multifractal formalism: a geometrical approach to multifractal systems. P.1. Singularity analysis. J. Phys. A 41, 015501. MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Solar Physics and Space WeatherNew Mexico State UniversityLas CrucesUSA

Personalised recommendations