Advertisement

Solar Physics

, Volume 290, Issue 12, pp 3641–3662 | Cite as

Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

  • Rohan E. LouisEmail author
  • Bernhard Kliem
  • B. Ravindra
  • Georgios Chintzoglou
Solar and Stellar Flares

Abstract

A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (\({\approx}\,40~\%\)). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

Keywords

Flares, dynamics Sunspots, magnetic fields Chromosphere, active Corona Prominences, active 

Notes

Acknowledgements

We gratefully acknowledge constructive comments by the referee, which were helpful in improving the clarity of this article. R.E.L. is grateful for the financial assistance from the German Science Foundation (DFG) under grant DE 787/3-1 and the European Commission’s FP7 Capacities Programme under the Grant Agreement number 312495. G.C. and B.K. acknowledge support by the NSF under Grant No. 1249270. B.K. also acknowledges support by the DFG. HMI data are courtesy of NASA/SDO and the HMI science team. They are provided by the Joint Science Operations Center – Science Data Processing at Stanford University. EUVI-B and COR1-B images are supplied courtesy of the STEREO Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) team. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. We have used the SOHO/LASCO CME catalog, generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

Supplementary material

11207_2015_726_MOESM1_ESM.mov (8.7 mb)
(MOV 8.7 MB)

References

  1. Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996, Plasmoid formation in a single sheared arcade and application to coronal mass ejections. Astron. Astrophys. 306, 913. ADS. ADSGoogle Scholar
  2. Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231.  DOI. ADS. CrossRefADSGoogle Scholar
  3. Amari, T., Aly, J.-J., Luciani, J.-F., Mikic, Z., Linker, J.: 2011, Coronal mass ejection initiation by converging photospheric flows: Toward a realistic model. Astrophys. J. Lett. 742, L27.  DOI. ADS. CrossRefADSGoogle Scholar
  4. Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56.  DOI. ADS. CrossRefADSGoogle Scholar
  5. Archontis, V., Hood, A.W.: 2012, Magnetic flux emergence: A precursor of solar plasma expulsion. Astron. Astrophys. 537, A62.  DOI. ADS. CrossRefADSGoogle Scholar
  6. Archontis, V., Török, T.: 2008, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, L35.  DOI. ADS. CrossRefADSGoogle Scholar
  7. Aulanier, G., Démoulin, P., Grappin, R.: 2005, Equilibrium and observational properties of line-tied twisted flux tubes. Astron. Astrophys. 430, 1067.  DOI. ADS. CrossRefADSzbMATHGoogle Scholar
  8. Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314.  DOI. ADS. CrossRefADSGoogle Scholar
  9. Burtseva, O., Petrie, G.: 2013, Magnetic flux changes and cancellation associated with X-class and M-class flares. Solar Phys. 283, 429.  DOI. ADS. CrossRefADSGoogle Scholar
  10. Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524.  DOI. ADS. CrossRefADSGoogle Scholar
  11. Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Hémoux, J.C., Csepura, G., Hagyard, M.J.: 1993, Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271, 292. ADS. ADSGoogle Scholar
  12. Feynman, J., Martin, S.F.: 1995, The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. 100, 3355.  DOI. ADS. CrossRefADSGoogle Scholar
  13. Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377.  DOI. ADS. CrossRefADSGoogle Scholar
  14. Gibson, S.E., Fan, Y.: 2006, The partial expulsion of a magnetic flux rope. Astrophys. J. Lett. 637, L65.  DOI. ADS. CrossRefADSGoogle Scholar
  15. Green, L.M., Kliem, B., Wallace, A.J.: 2011, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2.  DOI. ADS. CrossRefADSGoogle Scholar
  16. Hagyard, M.J., Venkatakrishnan, P., Smith, J.B. Jr.: 1990, Nonpotential magnetic fields at sites of gamma-ray flares. Astrophys. J. Suppl. 73, 159.  DOI. ADS. CrossRefADSGoogle Scholar
  17. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284.  DOI. ADS. CrossRefADSGoogle Scholar
  18. Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, 1745. ADS. Google Scholar
  19. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67.  DOI. ADS. CrossRefADSGoogle Scholar
  20. Kaneko, T., Yokoyama, T.: 2014, Simulation study of solar plasma eruptions caused by interactions between emerging flux and coronal arcade fields. Astrophys. J. 796, 44.  DOI. ADS. CrossRefADSGoogle Scholar
  21. Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81.  DOI. ADS. CrossRefADSGoogle Scholar
  22. Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002.  DOI. ADS. CrossRefADSGoogle Scholar
  23. Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31.  DOI. ADS. CrossRefADSGoogle Scholar
  24. Leake, J.E., Linton, M.G., Antiochos, S.K.: 2014, Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J. 787, 46.  DOI. ADS. CrossRefADSGoogle Scholar
  25. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. ADS. CrossRefADSGoogle Scholar
  26. Li, H., Sakurai, T., Ichimoto, K., UeNo, S.: 2000, Magnetic field evolution leading to solar flares I. Cases with low magnetic shear and flux emergence. Publ. Astron. Soc. Japan 52, 465. ADS. CrossRefADSGoogle Scholar
  27. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375.  DOI. ADS. CrossRefADSGoogle Scholar
  28. Lin, J., Forbes, T.G., Isenberg, P.A.: 2001, Prominence eruptions and coronal mass ejections triggered by newly emerging flux. J. Geophys. Res. 106, 25053.  DOI. ADS. CrossRefADSGoogle Scholar
  29. Lites, B.W.: 2005, Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. Astrophys. J. 622, 1275.  DOI. ADS. CrossRefADSGoogle Scholar
  30. Livi, S.H.B., Martin, S., Wang, H., Ai, G.: 1989, The association of flares to cancelling magnetic features on the Sun. Solar Phys. 121, 197.  DOI. ADS. CrossRefADSGoogle Scholar
  31. Louis, R.E., Puschmann, K.G., Kliem, B., Balthasar, H., Denker, C.: 2014, Sunspot splitting triggering an eruptive flare. Astron. Astrophys. 562, A110.  DOI. ADS. CrossRefADSGoogle Scholar
  32. Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217.  DOI. ADS. CrossRefADSGoogle Scholar
  33. Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192.  DOI. ADS. CrossRefADSGoogle Scholar
  34. Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577.  DOI. ADS. CrossRefADSGoogle Scholar
  35. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333.  DOI. ADS. CrossRefADSGoogle Scholar
  36. Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588.  DOI. ADS. CrossRefADSGoogle Scholar
  37. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107.  DOI. ADS. CrossRefADSGoogle Scholar
  38. Martin, S.F., Dezso, L., Antalova, A., Kucera, A., Harvey, K.L.: 1982, Emerging magnetic flux, flares and filaments – FBS interval 16 – 23 June 1980. Adv. Space Res. 2, 39.  DOI. ADS. CrossRefADSGoogle Scholar
  39. Martres, M.-J., Michard, R., Soru-Iscovici, I., Tsap, T.T.: 1968, Étude de la localisation des éruptions dans la structure magnétique évolutive des régions actives solaires. Solar Phys. 5, 187.  DOI. ADS. CrossRefADSGoogle Scholar
  40. Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898.  DOI. ADS. CrossRefADSGoogle Scholar
  41. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3.  DOI. ADS. CrossRefADSGoogle Scholar
  42. Roumeliotis, G., Sturrock, P.A., Antiochos, S.K.: 1994, A numerical study of the sudden eruption of sheared magnetic fields. Astrophys. J. 423, 847.  DOI. ADS. CrossRefADSGoogle Scholar
  43. Rust, D.M.: 1972, Flares and changing magnetic fields. Solar Phys. 25, 141.  DOI. ADS. CrossRefADSGoogle Scholar
  44. Sakajiri, T., Brooks, D.H., Yamamoto, T., Shiota, D., Isobe, H., Akiyama, S., Ueno, S., Kitai, R., Shibata, K.: 2004, A study of a tiny two-ribbon flare driven by emerging flux. Astrophys. J. 616, 578.  DOI. ADS. CrossRefADSGoogle Scholar
  45. Savcheva, A.S., Green, L.M., van Ballegooijen, A.A., DeLuca, E.E.: 2012, Photospheric flux cancellation and the build-up of sigmoidal flux ropes on the Sun. Astrophys. J. 759, 105.  DOI. ADS. CrossRefADSGoogle Scholar
  46. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229.  DOI. ADS. CrossRefADSGoogle Scholar
  47. Schrijver, C.J.: 2009, Driving major solar flares and eruptions: A review. Adv. Space Res. 43, 739.  DOI. ADS. CrossRefADSGoogle Scholar
  48. Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358.  DOI. ADS. CrossRefADSGoogle Scholar
  49. Sterling, A.C., Chifor, C., Mason, H.E., Moore, R.L., Young, P.R.: 2010, Evidence for magnetic flux cancelation leading to an ejective solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI. Astron. Astrophys. 521, A49.  DOI. ADS. CrossRefADSGoogle Scholar
  50. Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77.  DOI. ADS. CrossRefADSGoogle Scholar
  51. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS. ADSGoogle Scholar
  52. Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043.  DOI. ADS. CrossRefADSGoogle Scholar
  53. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971.  DOI. ADS. CrossRefADSGoogle Scholar
  54. van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115.  DOI. ADS. CrossRefADSGoogle Scholar
  55. Wang, H.: 2006, Rapid changes of photospheric magnetic fields around flaring magnetic neutral lines. Astrophys. J. 649, 490.  DOI. ADS. CrossRefADSGoogle Scholar
  56. Wang, J., Shi, Z.: 1993, The flare-associated magnetic changes in an active region. II – Flux emergence and cancellation. Solar Phys. 143, 119.  DOI. ADS. CrossRefADSGoogle Scholar
  57. Wang, Y.-M., Sheeley, N.R. Jr.: 1999, Filament eruptions near emerging bipoles. Astrophys. J. Lett. 510, L157.  DOI. ADS. CrossRefADSGoogle Scholar
  58. Xu, X.-Y., Chen, P.-F., Fang, C.: 2005, A parametric survey of the CME triggering process by numerical simulations. Chin. J. Astron. Astrophys. 5, 636.  DOI. ADS. CrossRefADSGoogle Scholar
  59. Xu, X.-Y., Fang, C., Chen, P.-F.: 2008, A statistical study on the filament eruption caused by new emerging flux. Chin. Astron. Astrophys. 32, 56.  DOI. ADS. CrossRefADSGoogle Scholar
  60. Zhang, J., Cheng, X., Ding, M.-D.: 2012, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun. 3, 747.  DOI. ADS. CrossRefADSGoogle Scholar
  61. Zhao, X., Hoeksema, J.T.: 1995, Prediction of the interplanetary magnetic field strength. J. Geophys. Res. 100, 19.  DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rohan E. Louis
    • 1
    Email author
  • Bernhard Kliem
    • 2
    • 3
  • B. Ravindra
    • 4
  • Georgios Chintzoglou
    • 3
  1. 1.Leibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany
  2. 2.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany
  3. 3.School of Physics, Astronomy and Computational SciencesGeorge Mason UniversityFairfaxUSA
  4. 4.Indian Institute of AstrophysicsBengaluruIndia

Personalised recommendations