Solar Physics

, Volume 290, Issue 12, pp 3573–3591 | Cite as

Impulsive Heating of Solar Flare Ribbons Above 10 MK

Solar and Stellar Flares

Abstract

The chromospheric response to the input of flare energy is marked by extended extreme ultraviolet (EUV) ribbons and hard X-ray (HXR) footpoints. These are usually explained as the result of heating and bremsstrahlung emission from accelerated electrons colliding in the dense chromospheric plasma. We present evidence of impulsive heating of flare ribbons above 10 MK in a two-ribbon flare. We analyse the impulsive phase of SOL2013-11-09T06:38, a C2.6 class event using data from Atmospheric Imaging Assembly (AIA) on board of the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to derive the temperature, emission measure and differential emission measure of the flaring regions and investigate the evolution of the plasma in the flaring ribbons. The ribbons were visible at all SDO/AIA EUV/UV wavelengths, in particular, at 94 and 131 Å filters, sensitive to temperatures of 8 MK and 12 MK. The time evolution of the emission measure of the plasma above 10 MK at the ribbons has a peak near the HXR peak time. The presence of hot plasma in the lower atmosphere is further confirmed by a RHESSI imaging spectroscopy analysis, which shows resolved sources at 11 – 13 MK that are associated with at least one ribbon. We found that collisional beam-heating can only marginally explain the power necessary to heat the 10 MK plasma at the ribbons.

Keywords

Sun: flares Sun: particle emission Sun: X-rays, gamma rays 

References

  1. Alexander, D., Coyner, A.J.: 2006, Temporal and spatial relationships between ultraviolet and hard X-ray emission in solar flares. Astrophys. J. 640, 505. DOI. ADS. CrossRefADSGoogle Scholar
  2. Battaglia, M., Fletcher, L., Benz, A.O.: 2009, Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891. DOI. ADS. CrossRefADSGoogle Scholar
  3. Bian, N.H., Emslie, A.G., Stackhouse, D.J., Kontar, E.P.: 2014, The formation of kappa-distribution accelerated electron populations in solar flares. Astrophys. J. 796, 142. DOI. ADS. CrossRefADSGoogle Scholar
  4. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P., Weber, M.: 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 41. DOI. ADS. CrossRefADSGoogle Scholar
  5. Boerner, P.F., Testa, P., Warren, H., Weber, M.A., Schrijver, C.J.: 2014, Photometric and thermal cross-calibration of solar EUV instruments. Solar Phys. 289, 2377. DOI. ADS. CrossRefADSGoogle Scholar
  6. Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. DOI. ADS. CrossRefADSGoogle Scholar
  7. Brown, J.C.: 1973, The temperature structure of chromospheric flares heated by non-thermal electrons. Solar Phys. 31, 143. DOI. ADS. CrossRefADSGoogle Scholar
  8. Brown, J.C., Karlický, M., MacKinnon, A.L., van den Oord, G.H.J.: 1990, Beam heating in solar flares – electrons or protons? Astrophys. J. Suppl. 73, 343. DOI. ADS. CrossRefADSGoogle Scholar
  9. Brown, J.C., Turkmani, R., Kontar, E.P., MacKinnon, A.L., Vlahos, L.: 2009, Local re-acceleration and a modified thick target model of solar flare electrons. Astron. Astrophys. 508, 993. DOI. ADS. CrossRefADSGoogle Scholar
  10. Campbell, P.M.: 1984, Transport phenomena in a completely ionized gas with large temperature gradients. Phys. Rev. A 30, 365. DOI. ADS. CrossRefADSGoogle Scholar
  11. Coyner, A.J., Alexander, D.: 2009, Implications of temporal development of localized ultraviolet and hard X-ray emission for large solar flares. Astrophys. J. 705, 554. DOI. ADS. CrossRefADSGoogle Scholar
  12. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, O.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADS. CrossRefADSGoogle Scholar
  13. Del Zanna, G., Mitra-Kraev, U., Bradshaw, S.J., Mason, H.E., Asai, A.: 2011, The 22 May 2007 B-class flare: new insights from Hinode observations. Astron. Astrophys. 526, A1. DOI. ADS. CrossRefGoogle Scholar
  14. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149. DOI. ADS. CrossRefADSGoogle Scholar
  15. Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. DOI. ADS. CrossRefADSGoogle Scholar
  16. Emslie, A.G., Noyes, R.W.: 1978, The characteristics of impulsive solar EUV bursts. Solar Phys. 57, 373. ADS. CrossRefADSGoogle Scholar
  17. Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. V – Response to thick-target heating. VI – Chromospheric evaporation due to heating by nonthermal electrons. VII – Dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414. DOI. ADS. CrossRefADSGoogle Scholar
  18. Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645. DOI. ADS. CrossRefADSGoogle Scholar
  19. Fletcher, L., Hannah, I.G., Hudson, H.S., Innes, D.E.: 2013, Flare ribbon energetics in the early phase of an SDO flare. Astrophys. J. 771, 104. DOI. ADS. CrossRefADSGoogle Scholar
  20. Graham, D.R., Fletcher, L., Hannah, I.G.: 2011, Hinode/EIS plasma diagnostics in the flaring solar chromosphere. Astron. Astrophys. 532, A27. DOI. ADS. CrossRefADSGoogle Scholar
  21. Graham, D.R., Hannah, I.G., Fletcher, L., Milligan, R.O.: 2013, The emission measure distribution of impulsive phase flare footpoints. Astrophys. J. 767, 83. DOI. ADS. CrossRefADSGoogle Scholar
  22. Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146. DOI. ADS. CrossRefADSGoogle Scholar
  23. Hannah, I.G., Kontar, E.P.: 2013, Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys. 553, A10. DOI. ADS. CrossRefADSGoogle Scholar
  24. Hinteregger, H.E., Hall, L.A.: 1969, Solar extreme ultraviolet emissions in the range 260 1300 Å observed from OSO-III. Solar Phys. 6, 175. DOI. ADS. CrossRefADSGoogle Scholar
  25. Horan, D.M., Kreplin, R.W., Fritz, G.G.: 1982, Direct measurements of impulsive extreme ultraviolet and hard X-ray solar flare emission. Astrophys. J. 255, 797. DOI. ADS. CrossRefADSGoogle Scholar
  26. Hori, K., Yokoyama, T., Kosugi, T., Shibata, K.: 1998, Single and multiple solar flare loops: hydrodynamics and Ca xix resonance line emission. Astrophys. J. 500, 492. DOI. ADS. CrossRefADSGoogle Scholar
  27. Hudson, H.S.: 1972, Thick-target processes and white-light flares. Solar Phys. 24, 414. DOI. ADS. CrossRefADSMathSciNetGoogle Scholar
  28. Hudson, H.S., Strong, K.T., Dennis, B.R., Zarro, D., Inda, M., Kosugi, T., Sakao, T.: 1994, Impulsive behavior in solar soft X-radiation. Astrophys. J. Lett. 422, L25. DOI. ADS. CrossRefADSGoogle Scholar
  29. Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI – an atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86. DOI. ADS. CrossRefADSGoogle Scholar
  30. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. CrossRefADSGoogle Scholar
  31. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. CrossRefADSGoogle Scholar
  32. McTiernan, J.M., Kane, S.R., Loran, J.M., Lemen, J.R., Acton, L.W., Hara, H., Tsuneta, S., Kosugi, T.: 1993, Temperature and density structure of the November 2 1991 flare observed by the YOHKOH soft X-ray telescope and hard X-ray telescope. Astrophys. J. Lett. 416, L91. DOI. ADS. CrossRefADSGoogle Scholar
  33. Milligan, R.O.: 2011, Spatially resolved nonthermal line broadening during the impulsive phase of a solar flare. Astrophys. J. 740, 70. DOI. ADS. CrossRefADSGoogle Scholar
  34. Milligan, R.O.: 2015, Extreme ultra-violet spectroscopy of the flaring solar chromosphere. Solar Phys., submitted. ADS.
  35. Milligan, R.O., Dennis, B.R.: 2009, Velocity characteristics of evaporated plasma using Hinode/EUV imaging spectrometer. Astrophys. J. 699, 968. DOI. ADS. CrossRefADSGoogle Scholar
  36. Milligan, R.O., McElroy, S.A.: 2013, Continuum contributions to the SDO/AIA passbands during solar flares. Astrophys. J. 777, 12. DOI. ADS. CrossRefADSGoogle Scholar
  37. Mrozek, T., Tomczak, M.: 2004, Solar impulsive soft X-ray brightenings and their connection with footpoint hard X-ray emission sources. Astron. Astrophys. 415, 377. DOI. ADS. CrossRefADSGoogle Scholar
  38. O’Dwyer, B., Del Zanna, G., Mason, H.E., Weber, M.A., Tripathi, D.: 2010, SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys. 521, A21. DOI. ADS. CrossRefGoogle Scholar
  39. Oka, M., Ishikawa, S., Saint-Hilaire, P., Krucker, S., Lin, R.P.: 2013, Kappa distribution model for hard X-ray coronal sources of solar flares. Astrophys. J. 764, 6. DOI. ADS. CrossRefADSGoogle Scholar
  40. Oka, M., Krucker, S., Hudson, H.S., Saint-Hilaire, P.: 2015, Electron energy partition in the above-the-looptop solar hard X-ray sources. Astrophys. J. 799, 129. DOI. ADS. CrossRefADSGoogle Scholar
  41. Qiu, J., Sturrock, Z., Longcope, D.W., Klimchuk, J.A., Liu, W.-J.: 2013, Ultraviolet and extreme-ultraviolet emissions at the flare footpoints observed by atmosphere imaging assembly. Astrophys. J. 774, 14. DOI. ADS. CrossRefADSGoogle Scholar
  42. Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI. ADS. CrossRefADSGoogle Scholar
  43. Ryan, D.F., Milligan, R.O., Gallagher, P.T., Dennis, B.R., Tolbert, A.K., Schwartz, R.A., Young, C.A.: 2012, The thermal properties of solar flares over three solar cycles using GOES X-ray observations. Astrophys. J. Suppl. 202, 11. DOI. ADS. CrossRefADSGoogle Scholar
  44. Ryan, D.F., O’Flannagain, A.M., Aschwanden, M.J., Gallagher, P.T.: 2014, The compatibility of flare temperatures observed with AIA, GOES, and RHESSI. Solar Phys. 289, 2547. DOI. ADS. CrossRefADSGoogle Scholar
  45. Saint-Hilaire, P., Benz, A.O.: 2005, Thermal and non-thermal energies of solar flares. Astron. Astrophys. 435, 743. DOI. ADS. CrossRefADSGoogle Scholar
  46. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. CrossRefADSGoogle Scholar
  47. Schmahl, E.J., Pernak, R.L., Hurford, G.J., Lee, J., Bong, S.: 2007, Analysis of RHESSI flares using a radio astronomical technique. Solar Phys. 240, 241. DOI. ADS. CrossRefADSGoogle Scholar
  48. Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D.: 2002, RHESSI data analysis software: rationale and methods. Solar Phys. 210, 165. DOI. ADS. CrossRefADSGoogle Scholar
  49. Simões, P.J.A., Kontar, E.P.: 2013, Implications for electron acceleration and transport from non-thermal electron rates at looptop and footpoint sources in solar flares. Astron. Astrophys. 551, A135. DOI. ADS. CrossRefADSGoogle Scholar
  50. Simões, P.J.A., Graham, D.R., Fletcher, L.: 2015, Direct observation of the energy release site in a solar flare by SDO/AIA, Hinode/EIS, and RHESSI. Astron. Astrophys. 577, A68. DOI. ADS. CrossRefADSGoogle Scholar
  51. Spitzer, L.: 1965, Physics of Fully Ionized Gases. ADS. Google Scholar
  52. Švestka, Z.: 1987, Cooling of a coronal flare loop through radiation and conduction. Solar Phys. 108, 411. DOI. ADS. CrossRefADSGoogle Scholar
  53. Thomas, R.J., Crannell, C.J., Starr, R.: 1985, Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 95, 323. DOI. ADS. CrossRefADSGoogle Scholar
  54. Varady, M., Karlický, M., Moravec, Z., Kašparová, J.: 2014, Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields. Astron. Astrophys. 563, A51. DOI. ADS. CrossRefADSGoogle Scholar
  55. Watanabe, T., Hara, H., Sterling, A.C., Harra, L.K.: 2010, Production of high-temperature plasmas during the early phases of a C9.7 flare. Astrophys. J. 719, 213. DOI. ADS. CrossRefADSGoogle Scholar
  56. White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from Goes soft X-ray measurements. Solar Phys. 227, 231. DOI. ADS. CrossRefADSGoogle Scholar
  57. Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275, 115. DOI. ADS. CrossRefADSGoogle Scholar
  58. Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A.G., Fletcher, L., Kontar, E.P., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N., Vlahos, L.: 2011, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357. DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. J. A. Simões
    • 1
  • D. R. Graham
    • 1
    • 2
  • L. Fletcher
    • 1
  1. 1.SUPA School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  2. 2.INAF-Osservatorio Astrofisico di ArcetriFirenzeItaly

Personalised recommendations