Solar Physics

, Volume 290, Issue 12, pp 3487–3523 | Cite as

New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

  • Adam F. Kowalski
  • S. L. Hawley
  • M. Carlsson
  • J. C. Allred
  • H. Uitenbroek
  • R. A. Osten
  • G. Holman
Solar and Stellar Flares


The heating mechanism at high densities during M-dwarf flares is poorly understood. Spectra of M-dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of \(T\approx10^{4}~\mbox{K}\) in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at \(\lambda\le3\,646\) Å, and 3) an apparent pseudo-continuum of blended high-order Balmer lines between \(\lambda=3\,646\) Å and \(\lambda\approx3\,900\) Å. These properties are not reproduced by models that employ a typical “solar-type” flare heating level of \({\le}\,10^{11}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\) in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological three-component interpretation. We present a new 1D radiative-hydrodynamic model of an M-dwarf flare from precipitating nonthermal electrons with a high energy flux of \(10^{13}~\mbox{erg}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\). The simulation produces bright near-ultraviolet and optical continuum emission from a dense (\(n>10^{15}~\mbox{cm}^{-3}\)), hot (\(T \approx12\,000\,\mbox{--}\,13\,500~\mbox{K}\)) chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a \(T\approx10^{4}~\mbox{K}\) blackbody-like continuum component and a low Balmer jump ratio result from optically thick Balmer (\(\infty\rightarrow n=2\)) and Paschen recombination (\(\infty\rightarrow n=3\)) radiation, and thus the properties of the flux spectrum are caused by blue (\(\lambda\approx4\,300\) Å) light escaping over a larger physical depth range than by red (\(\lambda\approx6\,700\) Å) and near-ultraviolet (\(\lambda\approx3\,500\) Å) light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau–Zener transitions that result from merged, high-order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.


Flares, dynamics Flares, energetic particles Flares, impulsive phase Flares, models Flares, spectrum Flares, white-light 



Adam F. Kowalski thanks the Science Organizing Committee of the Solar and Stellar Flares meeting in Prague, Czech Republic for the opportunity to present this work. We thank an anonymous referee for clarifications and comments that helped improve this work. Adam F. Kowalski thanks Petr Heinzel and Hans Ludwig for bringing hot star modeling articles of Stark broadening to his attention. We thank Adrian Daw, Eric Agol, Ellen Zweibel, and Jeremiah Murphy for helpful discussions and William Abbett for several IDL routines used in the analysis. AFK also acknowledges helpful discussions at the International Space Science Institute with Lyndsay Fletcher’s Solar and Stellar Flares team and with Sven Wedemeyer-Bohm’s Magnetic Activity of M-type Dwarf Stars and the Influence on Habitable Extra-solar Planets team. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by the University of Maryland Goddard Planetary Heliophysics Institute (GPHI) Task 132.


  1. Abbett, W.P., Hawley, S.L.: 1999, Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906.  DOI. ADSCrossRefGoogle Scholar
  2. Aller, L.H.: 1963, Astrophysics. The Atmospheres of the Sun and Stars, 2nd edn. Ronald Press, New York. Google Scholar
  3. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2005, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573.  DOI. ADSCrossRefGoogle Scholar
  4. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: 2006, Radiative hydrodynamic models of optical and ultraviolet emission from M dwarf flares. Astrophys. J. 644, 484.  DOI. ADSCrossRefGoogle Scholar
  5. Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, submitted, A unified computational model for solar and stellar flares. Astrophys. J. Google Scholar
  6. Aschwanden, M.J., Kliem, B., Schwarz, U., Kurths, J., Dennis, B.R., Schwartz, R.A.: 1998, Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505, 941.  DOI. ADSCrossRefGoogle Scholar
  7. Avrett, E.H., Machado, M.E., Kurucz, R.L.: 1986, Chromospheric flare models. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, National Solar Observatory, 216. Google Scholar
  8. Bengtson, R.D.: 1996, private communication. Google Scholar
  9. Bengtson, R.D., Tannich, J.D., Kepple, P.: 1970, Comparison between measured and theoretical Stark-broadened profiles of \(\mbox{H}_{6}\,\mbox{--}\,\mbox{H}_{12}\) emitted from a low-density plasma. Phys. Rev. A 1, 532.  DOI. ADSCrossRefGoogle Scholar
  10. Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489.  DOI. ADSCrossRefGoogle Scholar
  11. Carlsson, M.: 1998, Radiative transfer and radiation hydrodynamics. In: Vial, J.C., Bocchialini, K., Boumier, P. (eds.) Space Solar Physics: Theoretical and Observational Issues in the Context of the SOHO Mission, Lecture Notes in Physics 507, Springer, Berlin, 163.  DOI. CrossRefGoogle Scholar
  12. Carlsson, M., Rutten, R.J.: 1992, Solar hydrogen lines in the infrared. Astron. Astrophys. 259, L53. ADSGoogle Scholar
  13. Carlsson, M., Stein, R.F.: 1992, Non-LTE radiating acoustic shocks and CA II K2V bright points. Astrophys. J. Lett. 397, L59.  DOI. ADSCrossRefGoogle Scholar
  14. Carlsson, M., Stein, R.F.: 1994, Radiation shock dynamics in the solar chromosphere – Results of numerical simulations. In: Carlsson, M. (ed.) Chromospheric Dynamics, University of Oslo, Oslo, 47. Google Scholar
  15. Carlsson, M., Stein, R.F.: 1995, Does a nonmagnetic solar chromosphere exist? Astrophys. J. Lett. 440, L29.  DOI. ADSCrossRefGoogle Scholar
  16. Carlsson, M., Stein, R.F.: 1997, Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500.  DOI. ADSCrossRefGoogle Scholar
  17. Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626.  DOI. ADSCrossRefGoogle Scholar
  18. Christian, D.J., Mathioudakis, M., Jevremović, D., Dupuis, J., Vennes, S., Kawka, A.: 2003, The extreme-ultraviolet continuum of a strong stellar flare. Astrophys. J. Lett. 593, L105.  DOI. ADSCrossRefGoogle Scholar
  19. Cram, L.E., Woods, D.T.: 1982, Models for stellar flares. Astrophys. J. 257, 269.  DOI. ADSCrossRefGoogle Scholar
  20. Dalgarno, A., Griffing, G.W.: 1958, Energy per ion pair for electron and proton beams in atomic hydrogen. Proc. Roy. Soc. London Ser. A 248, 415.  DOI. ADSCrossRefGoogle Scholar
  21. Dappen, W., Anderson, L., Mihalas, D.: 1987, Statistical mechanics of partially ionized stellar plasma – The Planck–Larkin partition function, polarization shifts, and simulations of optical spectra. Astrophys. J. 319, 195.  DOI. ADSCrossRefGoogle Scholar
  22. Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect – What can it tell us about the impulsive and gradual phases of solar flares? Solar Phys. 146, 177.  DOI. ADSCrossRefGoogle Scholar
  23. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – An atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149.  DOI. ADSCrossRefGoogle Scholar
  24. Donati-Falchi, A., Falciani, R., Smaldone, L.A.: 1985, Analysis of the optical spectra of solar flares. IV. The ‘blue’ continuum of white light flares. Astron. Astrophys. 152, 165. ADSGoogle Scholar
  25. Donati-Falchi, A., Smaldone, L.A., Falciani, R.: 1984, Analysis of the optical spectra of solar flares. II. The energetics of the June 4, 1980 white light flare. Astron. Astrophys. 131, 256. ADSGoogle Scholar
  26. Dorfi, E.A., Drury, L.O.: 1987, Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69, 175.  DOI. ADSzbMATHCrossRefGoogle Scholar
  27. Doyle, J.G., Butler, C.J., Bryne, P.B., van den Oord, G.H.J.: 1988, Rotational modulation and flares on RS CVn and BY DRA systems. Astron. Astrophys. 193, 229. ADSGoogle Scholar
  28. Drake, S.A., Ulrich, R.K.: 1980, The emission-line spectrum from a slab of hydrogen at moderate to high densities. Astrophys. J. Suppl. Ser. 42, 351.  DOI. ADSCrossRefGoogle Scholar
  29. Eason, E.L.E., Giampapa, M.S., Radick, R.R., Worden, S.P., Hege, E.K.: 1992, Spectroscopic and photometric observations of a five-magnitude flare event on UV Ceti. Astron. J. 104, 1161.  DOI. ADSCrossRefGoogle Scholar
  30. Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241.  DOI. ADSCrossRefGoogle Scholar
  31. Fang, C., Hénoux, J.C., Gan, W.Q.: 1993, Diagnostics of non-thermal processes in chromospheric flares. 1. Hoe and Call K line profiles of an atmosphere bombarded by 10 –  500 keV electrons. Astron. Astrophys. 274, 917. ADSGoogle Scholar
  32. Feldman, U., Hiei, E., Phillips, K.J.H., Brown, C.M., Lang, J.: 1994, Very impulsive solar flares observed with the YOHKOH spacecraft. Astrophys. J. 421, 843.  DOI. ADSCrossRefGoogle Scholar
  33. Fisher, G.H.: 1989, Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019.  DOI. ADSCrossRefGoogle Scholar
  34. Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. Part Six. Chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425.  DOI. ADSCrossRefGoogle Scholar
  35. Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645.  DOI. ADSCrossRefGoogle Scholar
  36. Fuhrmeister, B., Lalitha, S., Poppenhaeger, K., Rudolf, N., Liefke, C., Reiners, A., Schmitt, J.H.M.M., Ness, J.U.: 2011, Multi-wavelength observations of Proxima Centauri. Astron. Astrophys. 534, A133.  DOI. ADSCrossRefGoogle Scholar
  37. Fuhrmeister, B., Liefke, C., Schmitt, J.H.M.M., Reiners, A.: 2008, Multiwavelength observations of a giant flare on CN Leonis. I. The chromosphere as seen in the optical spectra. Astron. Astrophys. 487, 293.  DOI. ADSCrossRefGoogle Scholar
  38. Gan, W.Q., Fang, C.: 1990, A hydrodynamic model of the gradual phase of the solar flare loop. Astrophys. J. 358, 328.  DOI. ADSCrossRefGoogle Scholar
  39. Gan, W.Q., Rieger, E., Zhang, H.Q., Fang, C.: 1992, The role of chromospheric condensations in the continuum emission of white-light flares. Astrophys. J. 397, 694.  DOI. ADSCrossRefGoogle Scholar
  40. García-Alvarez, D., Jevremović, D., Doyle, J.G., Butler, C.J.: 2002, Observations and modelling of a large optical flare on AT Microscopii. Astron. Astrophys. 383, 548.  DOI. ADSCrossRefGoogle Scholar
  41. Gritsyk, P.A., Somov, B.V.: 2014, Reverse-current effect in present-day models of solar flares: Theory and high-accuracy observations. Astron. Lett. 40, 499.  DOI. ADSCrossRefGoogle Scholar
  42. Guedel, M., Benz, A.O., Schmitt, J.H.M.M., Skinner, S.L.: 1996, The Neupert effect in active stellar coronae: Chromospheric evaporation and coronal heating in the dMe flare star binary UV ceti. Astrophys. J. 471, 1002.  DOI. ADSCrossRefGoogle Scholar
  43. Gustafsson, B.: 1973, A FORTRAN Program for Calculating “Continuous” Absorption Coefficients of Stellar Atmospheres, Uppsala Astr. Obs. Ann. 5. Google Scholar
  44. Hansteen, V.: 2012, private communication. Google Scholar
  45. Hawley, S.L., Allred, J.C., Johns-Krull, C.M., Fisher, G.H., Abbett, W.P., Alekseev, I., Avgoloupis, S.I., Deustua, S.E., Gunn, A., Seiradakis, J.H., Sirk, M.M., Valenti, J.A.: 2003, Multiwavelength observations of flares on AD Leonis. Astrophys. J. 597, 535.  DOI. ADSCrossRefGoogle Scholar
  46. Hawley, S.L., Davenport, J.R.A., Kowalski, A.F., Wisniewski, J.P., Hebb, L., Deitrick, R., Hilton, E.J.: 2014, Kepler flares. I. Active and inactive M dwarfs. Astrophys. J. 797, 121.  DOI. ADSCrossRefGoogle Scholar
  47. Hawley, S.L., Fisher, G.H.: 1992, X-ray-heated models of stellar flare atmospheres – Theory and comparison with observations. Astrophys. J. Suppl. Ser. 78, 565.  DOI. ADSCrossRefGoogle Scholar
  48. Hawley, S.L., Fisher, G.H.: 1994, Solar flare model atmospheres. Astrophys. J. 426, 387.  DOI. ADSCrossRefGoogle Scholar
  49. Hawley, S.L., Fisher, G.H., Simon, T., Cully, S.L., Deustua, S.E., Jablonski, M., Johns-Krull, C.M., Pettersen, B.R., Smith, V., Spiesman, W.J., Valenti, J.: 1995, Simultaneous extreme-ultraviolet explorer and optical observations of AD Leonis: Evidence for large coronal loops and the Neupert effect in stellar flares. Astrophys. J. 453, 464.  DOI. ADSCrossRefGoogle Scholar
  50. Hawley, S.L., Pettersen, B.R.: 1991, The great flare of 1985 April 12 on AD Leonis. Astrophys. J. 378, 725.  DOI. ADSCrossRefGoogle Scholar
  51. Heinzel, P., Kleint, L.: 2014, Hydrogen Balmer continuum in solar flares detected by the Interface Region Imaging Spectrograph (IRIS). Astrophys. J. Lett. 794, L23.  DOI. ADSCrossRefGoogle Scholar
  52. Holman, G.D.: 2012, Understanding the impact of return-current losses on the X-ray emission from solar flares. Astrophys. J. 745, 52.  DOI. ADSCrossRefGoogle Scholar
  53. Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: 2003, Electron Bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97.  DOI. ADSCrossRefGoogle Scholar
  54. Houdebine, E.R.: 1992, Investigating the spectroscopic signatures of stellar flares. Ir. Astron. J. 20, 213. ADSGoogle Scholar
  55. Hubeny, I., Hummer, D.G., Lanz, T.: 1994, NLTE model stellar atmospheres with line blanketing near the series limits. Astron. Astrophys. 282, 151. ADSGoogle Scholar
  56. Hummer, D.G., Mihalas, D.: 1988, The equation of state for stellar envelopes. I – An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794.  DOI. ADSCrossRefGoogle Scholar
  57. Ireland, J., Tolbert, A.K., Schwartz, R.A., Holman, G.D., Dennis, B.R.: 2013, Estimating the properties of hard X-ray solar flares by constraining model parameters. Astrophys. J. 769, 89.  DOI. ADSCrossRefGoogle Scholar
  58. Jevremovic, D., Butler, C.J., Drake, S.A., O’Donoghue, D., van Wyk, F.: 1998, Ultraviolet and optical flares on GL 866. Astron. Astrophys. 338, 1057. ADSGoogle Scholar
  59. Johns-Krull, C.M., Hawley, S.L., Basri, G., Valenti, J.A.: 1997, Hamilton Echelle spectroscopy of the 1993 March 6 solar flare. Astrophys. J. Suppl. Ser. 112, 221.  DOI. ADSCrossRefGoogle Scholar
  60. Johns-Krull, C.M., Valenti, J.A.: 1996, Detection of strong magnetic fields on M dwarfs. Astrophys. J. Lett. 459, L95.  DOI. ADSCrossRefGoogle Scholar
  61. Karlický, M., Brown, J.C., Conway, A.J., Penny, G.: 2000, Flare hard X-rays from neutral beams. Astron. Astrophys. 353, 729. ADSGoogle Scholar
  62. Katsova, M.M., Boiko, A.Y., Livshits, M.A.: 1997, The gas-dynamic model of impulsive stellar flares. Astron. Astrophys. 321, 549. ADSGoogle Scholar
  63. Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z.: 2009, Response of optical hydrogen lines to beam heating. I. Electron beams. Astron. Astrophys. 499, 923.  DOI. ADSCrossRefGoogle Scholar
  64. Kepple, P., Griem, H.R.: 1968, Improved Stark profile calculations for the hydrogen lines \(\mbox{H}\upalpha\), \(\mbox{H}\upbeta\), \(\mbox{H}\upgamma\), and \(\mbox {H} \updelta\). Phys. Rev. 173, 317.  DOI. ADSCrossRefGoogle Scholar
  65. Kerr, G.S., Fletcher, L.: 2014, Physical properties of white-light sources in the 2011 February 15 solar flare. Astrophys. J. 783, 98.  DOI. ADSCrossRefGoogle Scholar
  66. Kowalski, A.F., Cauzzi, G., Fletcher, L.: 2015, Optical spectral observations of a flickering white-light kernel in a C1 solar flare. Astrophys. J. 798, 107.  DOI. ADSCrossRefGoogle Scholar
  67. Kowalski, A.F., Hawley, S.L., Holtzman, J.A., Wisniewski, J.P., Hilton, E.J.: 2010, A white light megaflare on the dM4.5e Star YZ CMi. Astrophys. J. Lett. 714, L98.  DOI. ADSCrossRefGoogle Scholar
  68. Kowalski, A.F., Hawley, S.L., Holtzman, J.A., Wisniewski, J.P., Hilton, E.J.: 2012, The multiple continuum components in the white-light flare of 16 January 2009 on the dM4.5e star YZ CMi. Solar Phys. 277, 21.  DOI. ADSCrossRefGoogle Scholar
  69. Kowalski, A.F., Hawley, S.L., Wisniewski, J.P., Osten, R.A., Hilton, E.J., Holtzman, J.A., Schmidt, S.J., Davenport, J.R.A.: 2013, Time-resolved properties and global trends in dMe flares from simultaneous photometry and spectra. Astrophys. J. Suppl. Ser. 207, 15.  DOI. ADSCrossRefGoogle Scholar
  70. Kretzschmar, M.: 2011, The Sun as a star: Observations of white-light flares. Astron. Astrophys. 530, A84.  DOI. ADSCrossRefGoogle Scholar
  71. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., Battaglia, M., Kontar, E.P., Benz, A.O., Csillaghy, A., Lin, R.P.: 2011, High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739, 96.  DOI. ADSCrossRefGoogle Scholar
  72. Kunkel, W.E.: 1970, On the spectra of stellar flares. Astrophys. J. 161, 503.  DOI. ADSCrossRefGoogle Scholar
  73. Leenaarts, J., Pereira, T.M.D., Carlsson, M., Uitenbroek, H., De Pontieu, B.: 2013, The formation of IRIS diagnostics. II. The formation of the Mg II h & k lines in the solar atmosphere. Astrophys. J. 772, 90.  DOI. ADSCrossRefGoogle Scholar
  74. Lemke, M.: 1997, Extended VCS Stark broadening tables for hydrogen – Lyman to Brackett series. Astron. Astrophys. Suppl. 122, 285.  DOI. ADSCrossRefGoogle Scholar
  75. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3.  DOI. ADSCrossRefGoogle Scholar
  76. Livshits, M.A., Badalian, O.G., Kosovichev, A.G., Katsova, M.M.: 1981, The optical continuum of solar and stellar flares. Solar Phys. 73, 269.  DOI. ADSCrossRefGoogle Scholar
  77. Longcope, D.W., Guidoni, S.E.: 2011, A model for the origin of high density in looptop X-ray sources. Astrophys. J. 740, 73.  DOI. ADSCrossRefGoogle Scholar
  78. Magain, P.: 1986, Contribution functions and the depths of formation of spectral lines. Astron. Astrophys. 163, 135. ADSGoogle Scholar
  79. Mathioudakis, M., Bloomfield, D.S., Jess, D.B., Dhillon, V.S., Marsh, T.R.: 2006, The periodic variations of a white-light flare observed with ULTRACAM. Astron. Astrophys. 456, 323.  DOI. ADSCrossRefGoogle Scholar
  80. Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn. Freeman, New York. Google Scholar
  81. Milligan, R.O., Kerr, G.S., Dennis, B.R., Hudson, H.S., Fletcher, L., Allred, J.C., Chamberlin, P.C., Ireland, J., Mathioudakis, M., Keenan, F.P.: 2014, The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations. Astrophys. J. 793, 70.  DOI. ADSCrossRefGoogle Scholar
  82. Mott, N.F., Massey, H.S.W.: 1965, Theory of Atomic Collisions, 3rd edn. Oxford University Press, Oxford. Google Scholar
  83. Mullan, D.J., Mathioudakis, M., Bloomfield, D.S., Christian, D.J.: 2006, A comparative study of flaring loops in active stars. Astrophys. J. Suppl. Ser. 164, 173.  DOI. ADSCrossRefGoogle Scholar
  84. Nayfonov, A., Däppen, W., Hummer, D.G., Mihalas, D.: 1999, The MHD equation of state with post-Holtsmark microfield distributions. Astrophys. J. 526, 451.  DOI. ADSCrossRefGoogle Scholar
  85. Neidig, D.F.: 1983, Spectral analysis of the optical continuum in the 24 April 1981 flare. Solar Phys. 85, 285.  DOI. ADSCrossRefGoogle Scholar
  86. Neidig, D.F., Grosser, H., Hrovat, M.: 1994, Optical output of the 24 April 1984 white-light flare. Solar Phys. 155, 199.  DOI. ADSCrossRefGoogle Scholar
  87. Osten, R.A., Drake, S., Tueller, J., Cummings, J., Perri, M., Moretti, A., Covino, S.: 2007, Nonthermal hard X-ray emission and iron \(\mbox{K}\upalpha\) emission from a superflare on II Pegasi. Astrophys. J. 654, 1052.  DOI. ADSCrossRefGoogle Scholar
  88. Osten, R.A., Godet, O., Drake, S., Tueller, J., Cummings, J., Krimm, H., Pye, J., Pal’shin, V., Golenetskii, S., Reale, F., Oates, S.R., Page, M.J., Melandri, A.: 2010, The mouse that roared: A superflare from the dMe flare star EV Lac detected by Swift and Konus-Wind. Astrophys. J. 721, 785.  DOI. ADSCrossRefGoogle Scholar
  89. Osten, R.A., Hawley, S.L., Allred, J., Johns-Krull, C.M., Brown, A., Harper, G.M.: 2006, From radio to X-ray: The quiescent atmosphere of the dMe flare star EV Lacertae. Astrophys. J. 647, 1349.  DOI. ADSCrossRefGoogle Scholar
  90. Paulson, D.B., Allred, J.C., Anderson, R.B., Hawley, S.L., Cochran, W.D., Yelda, S.: 2006, Optical spectroscopy of a flare on Barnard’s star. Publ. Astron. Soc. Pac. 118, 227.  DOI. ADSCrossRefGoogle Scholar
  91. Phan-Bao, N., Lim, J., Donati, J.F., Johns-Krull, C.M., Martín, E.L.: 2009, Magnetic field topology in low-mass stars: Spectropolarimetric observations of M dwarfs. Astrophys. J. 704, 1721.  DOI. ADSCrossRefGoogle Scholar
  92. Pillet, P., van Linden van den Heuvell, H.B., Smith, W.W., Kachru, R., Tran, N.H., Gallagher, T.F.: 1984, Microwave ionization of Na Rydberg atoms. Phys. Rev. A 30, 280.  DOI. ADSCrossRefGoogle Scholar
  93. Qiu, J., Liu, W., Hill, N., Kazachenko, M.: 2010, Reconnection and energetics in two-ribbon flares: A revisit of the Bastille-day flare. Astrophys. J. 725, 319.  DOI. ADSCrossRefGoogle Scholar
  94. Ricchiazzi, P.J.: 1982, A static model of chromospheric heating in solar flares. Ph.D. Thesis, California University, San Diego. Google Scholar
  95. Ricchiazzi, P.J., Canfield, R.C.: 1983, A static model of chromospheric heating in solar flares. Astrophys. J. 272, 739.  DOI. ADSCrossRefGoogle Scholar
  96. Robinson, R.D., Carpenter, K.G., Percival, J.W., Bookbinder, J.A.: 1995, A search for microflaring activity on dMe flare stars. I. Observations of the dM8e star CN Leonis. Astrophys. J. 451, 795.  DOI. ADSCrossRefGoogle Scholar
  97. Rybicki, G.B., Hummer, D.G.: 1992, An accelerated lambda iteration method for multilevel radiative transfer. II. Overlapping transitions with full continuum. Astron. Astrophys. 262, 209. ADSGoogle Scholar
  98. Scharmer, G.B.: 1981, Solutions to radiative transfer problems using approximate lambda operators. Astrophys. J. 249, 720.  DOI. ADSCrossRefGoogle Scholar
  99. Scharmer, G.B., Carlsson, M.: 1985, A new approach to multi-level non-LTE radiative transfer problems. J. Comput. Phys. 59, 56.  DOI. ADSzbMATHCrossRefGoogle Scholar
  100. Schrijver, C.J., Hudson, H.S., Murphy, R.J., Share, G.H., Tarbell, T.D.: 2006, Gamma rays and the evolving, compact structures of the 2003 October 28 X17 flare. Astrophys. J. 650, 1184.  DOI. ADSCrossRefGoogle Scholar
  101. Seaton, M.J.: 1990, Atomic data for opacity calculations. XIII. Line profiles for transitions in hydrogenic ions. J. Phys. B, At. Mol. Opt. Phys. 23, 3255.  DOI. ADSMathSciNetCrossRefGoogle Scholar
  102. Smith, K., Güdel, M., Audard, M.: 2005, Flares observed with XMM-Newton and the VLA. Astron. Astrophys. 436, 241.  DOI. ADSCrossRefGoogle Scholar
  103. Smith, R.K., Brickhouse, N.S., Liedahl, D.A., Raymond, J.C.: 2001, Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. Lett. 556, L91.  DOI. ADSCrossRefGoogle Scholar
  104. Stehle, C., Jacquemot, S.: 1993, Line shapes in hydrogen opacities. Astron. Astrophys. 271, 348. ADSGoogle Scholar
  105. Su, Y., Holman, G.D., Dennis, B.R.: 2011, Evidence for the full hard X-ray spectral signature of nonuniform ionization in a solar flare. Astrophys. J. 731, 106.  DOI. ADSCrossRefGoogle Scholar
  106. Sutton, K.: 1978, Approximate line shapes for hydrogen. J. Quant. Spectrosc. Radiat. Transf. 20, 333.  DOI. ADSCrossRefGoogle Scholar
  107. Švestka, Z.: 1963, Spectral analysis of the moustache-like flare of August 7, 1960. Bull. Astron. Inst. Czechoslov. 14, 234. ADSGoogle Scholar
  108. Tremblay, P.E., Bergeron, P.: 2009, Spectroscopic analysis of DA white dwarfs: Stark broadening of hydrogen lines including nonideal effects. Astrophys. J. 696, 1755.  DOI. ADSCrossRefGoogle Scholar
  109. Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J. 557, 389.  DOI. ADSCrossRefGoogle Scholar
  110. Varady, M., Karlický, M., Moravec, Z., Kašparová, J.: 2014, Modifications of thick-target model: Re-acceleration of electron beams by static and stochastic electric fields. Astron. Astrophys. 563, A51.  DOI. ADSCrossRefGoogle Scholar
  111. Vidal, C.R., Cooper, J., Smith, E.W.: 1970, Hydrogen Stark broadening calculations with the unified classical path theory. J. Quant. Spectrosc. Radiat. Transf. 10, 1011.  DOI. ADSCrossRefGoogle Scholar
  112. Vidal, C.R., Cooper, J., Smith, E.W.: 1971, Unified theory calculations of Stark broadened hydrogen lines including lower state interactions. J. Quant. Spectrosc. Radiat. Transf. 11, 263.  DOI. ADSCrossRefGoogle Scholar
  113. Vidal, C.R., Cooper, J., Smith, E.W.: 1973, Hydrogen Stark-broadening tables. Astrophys. J. Suppl. Ser. 25, 37.  DOI. ADSCrossRefGoogle Scholar
  114. Wang, L., Fang, C., Ding, M.: 2007, Small-scale brightenings in the UV continuum of an M9.1 solar flare. Chin. J. Astron. Astrophys. 7, 721.  DOI. ADSCrossRefGoogle Scholar
  115. Warren, H.P.: 2006, Multithread hydrodynamic modeling of a solar flare. Astrophys. J. 637, 522.  DOI. ADSCrossRefGoogle Scholar
  116. Wiese, W.L., Kelleher, D.E., Paquette, D.R.: 1972, Detailed study of the Stark broadening of Balmer lines in a high-density plasma. Phys. Rev. A 6, 1132.  DOI. ADSCrossRefGoogle Scholar
  117. Worden, S.P., Schneeberger, T.J., Giampapa, M.S., Deluca, E.E., Cram, L.E.: 1984, The response of chromospheric emission lines to flares on YZ Canis Minoris. Astrophys. J. 276, 270.  DOI. ADSCrossRefGoogle Scholar
  118. Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M.: 2003, CHIANTI – An atomic database for emission lines. VI. Proton rates and other improvements. Astrophys. J. Suppl. Ser. 144, 135.  DOI. ADSCrossRefGoogle Scholar
  119. Zener, C.: 1932, Non-adiabatic crossing of energy levels. Proc. Roy. Soc. London Ser. A 137, 696.  DOI. ADSCrossRefGoogle Scholar
  120. Zirin, H.: 1980, Three flares with blue continuum, one with a D3 preflare shell. Astrophys. J. 235, 618.  DOI. ADSCrossRefGoogle Scholar
  121. Zirin, H., Neidig, D.F.: 1981, Continuum emission in the 1980 July 1 solar flare. Astrophys. J. Lett. 248, L45.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Adam F. Kowalski
    • 1
    • 2
  • S. L. Hawley
    • 3
  • M. Carlsson
    • 4
  • J. C. Allred
    • 2
  • H. Uitenbroek
    • 5
  • R. A. Osten
    • 6
  • G. Holman
    • 2
  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA
  2. 2.NASA Goddard Space Flight CenterHeliophysics Science DivisionGreenbeltUSA
  3. 3.Department of AstronomyUniversity of WashingtonSeattleUSA
  4. 4.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  5. 5.National Solar ObservatorySunpsotUSA
  6. 6.Space Telescope Science InstituteBaltimoreUSA

Personalised recommendations