Solar Physics

, Volume 290, Issue 6, pp 1581–1600 | Cite as

The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station

  • G. ThuillierEmail author
  • J. W. Harder
  • A. Shapiro
  • T. N. Woods
  • J.-M. Perrin
  • M. Snow
  • T. Sukhodolov
  • W. Schmutz


A solar spectrum extending from the extreme ultraviolet to the near-infrared is an important input for solar physics, climate research, and atmospheric physics. Ultraviolet measurements have been conducted since the beginning of the space age, but measurements throughout the contiguous visible and infrared (IR) regions are much more sparse. Ageing is a key problem throughout the entire spectral domain, but most of the effort extended to understand degradation was concentrated on the ultraviolet spectral region, and these mechanisms may not be appropriate in the IR. This problem is further complicated by the scarcity of long-term data sets. Onboard the International Space Station, the SOLSPEC spectrometer measured an IR solar spectral irradiance lower than the one given by ATLAS 3, e.g. by about 7 % at 1 700 nm. We here evaluate the consequences of the lower solar spectral irradiance measurements and present a re-analysis of the on-orbit calibration lamp and solar data trend, which lead to a revised spectrum.


Ground-based measurements International Space Station Solar infrared spectrum SOLSPEC 



The SOLSPEC investigation is supported by the Centre National d’Etudes Spatiales (France), the Centre National de la Recherche Scientifique (France), the Federal Office for Scientific, Technical and Cultural Affairs (Belgium), and the Bundesministerium für Forschung und Technologie (Germany). The participating institutes are the Service d’Aéronomie du CNRS, now LATMOS, the Institut d’Aéronomie Spatiale de Belgique, and the Landessternwarte of Heidelberg. The SOLSPEC absolute calibration has been carried out with the blackbody BB3200g from the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany). SOLSPEC constitutes an equipment of the external SOLAR payload of the ESA Columbus Laboratory placed onboard the International Space Station. The SOLAR operations are conducted by the Belgium User Support Operations Center (B-USOC) via the COLUMBUS Control Center of DLR (Oberpfaffenhofen, Germany). We thank the World Radiation Monitoring Center-Baseline Surface Radiative Network (WRMC-BSRN) for providing access to the local atmospheric data at the Izaña station. J. Harder, T. Woods, and M. Snow are supported by NASA contract NAS5-97045. The authors thank Vanessa George (LASP) for her support in document preparation.


  1. Arvesen, J.C., Griffin, R.N., Jr., Pearson, B.D., Jr.: 1969, Appl. Opt. 8, 2215.  DOI. ADSCrossRefGoogle Scholar
  2. Bolsée, D.: 2012, Métrologie de la Spectrophotométrie Solaire Absolue: Principes, Mise en œuvre et Résultats. Instrument SOLSPEC à bord de la Station Spatiale Internationale. Ph.D. thesis, Free University of Brussels. Google Scholar
  3. Bolsée, D., Pereira, N., Decuyper, W., Gillotay, D., Yu, H., Sperfeld, P., et al.: 2014, Solar Phys. 289, 2433.  DOI. ADSCrossRefGoogle Scholar
  4. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noel, S., Rozanof, V.V., Chance, K.V., Goede, A.P.H.: 1999, J. Atmos. Sci. 56, 127.  DOI. ADSCrossRefGoogle Scholar
  5. Fontenla, J., White, O.R., Fox, P.A., Avrett, E.H., Kurucz, R.L.: 1999, Astrophys. J. 518, 480.  DOI. ADSCrossRefGoogle Scholar
  6. Fontenla, J.M., Curdt, W., Haberreiter, M., Harder, J., Tian, H.: 2009, Astrophys. J. 707, 482.  DOI. ADSCrossRefGoogle Scholar
  7. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, J. Geophys. Res. 116, D20108.  DOI. ADSCrossRefGoogle Scholar
  8. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, Solar Phys. 263, 3.  DOI. ADSCrossRefGoogle Scholar
  9. Holzreuter, R., Solanki, S.K.: 2013, Astron. Astrophys. 558, A20.  DOI. ADSCrossRefGoogle Scholar
  10. Kondratyev, K.Y., Andreev, S.D., Badinov, I.Y., Grishechkin, V.S., Popova, L.V.: 1965, Appl. Opt. 4, 1069. ADSCrossRefGoogle Scholar
  11. Kopp, G., Lean, J.L.: 2011, Geophys. Res. Lett. 38, L01706.  DOI. ADSCrossRefGoogle Scholar
  12. Kurucz, R.: 1995, CD Rom # 23, Smithonian Astrophys. Obs. Google Scholar
  13. Madronich, S., Flocke, S.: 1998, In: Boule, P. (ed.) Handbook of Environmental Chemistry, Springer, Heidelberg, 1. Google Scholar
  14. McClintock, W.E., Snow, M., Woods, T.N.: 2005, Solar Phys. 230, 259.  DOI. ADSCrossRefGoogle Scholar
  15. Menang, K.P., Ptashnik, I.V., Coleman, M.D., Gardiner, T.D., Shine, K.P.: 2013, J. Geophys. Res. 118, 1.  DOI. Google Scholar
  16. Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn. Freeman, New York 108. Google Scholar
  17. Noël, S., Kokhanovsky, A.A., Jourdan, O., Gerilowski, K., Pfeilsticker, K., Weber, M., Bovensmann, H., Burrows, J.P.: 2007, In: Danesy, D. (ed.) Proc. Third Workshop on the Atmospheric Chemistry Validation of ENVISAT 3 (ACVE3), ESA SP-642, on CDROM. Google Scholar
  18. Pagaran, J., Harder, J.W., Weber, M., Floyd, L.F., Burrows, J.P.: 2011, Astron. Astrophys. 528, A67.  DOI. ADSCrossRefGoogle Scholar
  19. Perrin, J.-M., Thuillier, G., Fehrenbach, M., Huppert, F.: 2005, J. Atmos. Solar-Terr. Phys. 67, 449.  DOI. ADSCrossRefGoogle Scholar
  20. Rottman, G.: 2005, Solar Phys. 230, 7.  DOI. ADSCrossRefGoogle Scholar
  21. Schmidtke, G., Brunner, R., Eberhard, D., Halford, B., Klocke, U., Knothe, M., Konz, W., Riedel, W.-J., Wolf, H.: 2006, Adv. Space Res. 37, 273.  DOI. ADSCrossRefGoogle Scholar
  22. Schmidtke, G., Nikutowski, B., Jacobi, Ch., Brunner, R., Erhardt, Ch., Knecht, S., Scherle, J., Schlagenhauf, J.: 2014, Solar Phys. 289(5), 1863.  DOI. ADSCrossRefGoogle Scholar
  23. Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, Astron. Astrophys. 517, A48.  DOI. ADSCrossRefGoogle Scholar
  24. Shaw, G.E.: 1976, Pure Appl. Geophys. 114, 1. ADSCrossRefGoogle Scholar
  25. Skupin, J., Noël, S., Wuttke, M.W., Gottwald, M., Bovensmann, H., Weber, M., Burrows, J.P.: 2005, Adv. Space Res. 35, 370.  DOI. ADSCrossRefGoogle Scholar
  26. Socas-Navarro, H.: 2011, Astron. Astrophys. 539(A37), 10.  DOI. Google Scholar
  27. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, In: Pap, J., Fox, P., Frohlich, C., Hudson, H.S., Kuhn, J., McCormack, J., North, G., Sprigg, W., Wu, S.T. (eds.) Solar Variability and Its Effect on Climate, AGU Geophys. Monogr. 141, 171.  DOI. CrossRefGoogle Scholar
  28. Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., et al.: 2009, Solar Phys. 257, 185.  DOI. ADSCrossRefGoogle Scholar
  29. Thuillier, G., Bolsée, D., Schmidtke, G., Foujols, T., Nikutowski, B., Shapiro, A.I., et al.: 2014, Solar Phys. 289, 1931.  DOI. ADSCrossRefGoogle Scholar
  30. Uitenbroek, H., Criscuoli, S.: 2011, Astrophys. J. 736, 69.  DOI. ADSCrossRefGoogle Scholar
  31. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Geophys. Res. Lett. 36, L01101.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • G. Thuillier
    • 1
    Email author
  • J. W. Harder
    • 2
  • A. Shapiro
    • 3
  • T. N. Woods
    • 2
  • J.-M. Perrin
    • 4
  • M. Snow
    • 2
  • T. Sukhodolov
    • 3
  • W. Schmutz
    • 3
  1. 1.LATMOS-CNRSGuyancourtFrance
  2. 2.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Max-Planck InstitutGottingenGermany
  4. 4.Observatoire de Haute-Provence du CNRSSaint Michel l’ObservatoireFrance

Personalised recommendations