Advertisement

Solar Physics

, Volume 290, Issue 6, pp 1547–1568 | Cite as

Helioseismic Investigation of Modeled and Observed Supergranule Structure

  • K. DeGrave
  • J. Jackiewicz
Article

Abstract

The subsurface structure of an “average” supergranule is derived using existing data products from the Helioseismic and Magnetic Imager (HMI) time–distance pipeline and compared to the best helioseismic flow model detailed by Duvall and Hanasoge (Solar Phys. 287, 71, 2013). We find that significant differences exist between them. Unlike the shallow structure predicted by the model, the average HMI supergranule is very extended in depth, exhibiting horizontal outflow down to 7 – 10 Mm, followed by a weak inflow reaching a depth of ≈ 20 Mm below the photosphere. The maximal velocities in the horizontal direction for the average supergranule are much lower than in the model, and its near-surface flow field RMS value is about an order of magnitude lower than the often-quoted values of ≈ 250 – 350 m s−1 for supergranulation. Much of the overall HMI supergranule structure and its weak flow amplitudes can be explained by examining the HMI pipeline averaging kernels for the near-surface inversions, which are found to be very broad in depth, and nearly identical to one another in terms of sensitivity along the z-direction. We also show that forward-modeled travel times in the Born approximation using the model (derived from a ray-theory approach) are inconsistent with measured travel times for an average supergranule at any distance. Our findings suggest systematic inaccuracies in the typical techniques used to study supergranulation, confirming some of the results of Duvall and Hanasoge (Solar Phys. 287, 71, 2013).

Keywords

Helioseismology Supergranulation Interior, convective zone 

Notes

Acknowledgements

The authors gratefully acknowledge past support by the NASA SDO Science Center through contract NNH09CE41C awarded to NWRA, and helpful discussions with Junwei Zhao, Tom Duvall Jr., and Matthias Rempel. The data used here are courtesy of NASA/SDO and the HMI Science Team, whom we thank for their dedicated work. K. DeGrave also acknowledges funding from NSF award NSF/AGS-1351311 and sub-award AURA/NSO No. N06504C-N.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Benson, D., Stein, R., Nordlund, Å.: 2006, In: Leibacher, J., Stein, R.F., Uitenbroek, H. (eds.) Solar MHD theory and observations: a high spatial resolution perspective, Astronomical Society of the Pacific Conference Series 354, 92. ADS. Google Scholar
  2. Birch, A.C., Gizon, L.: 2007, Astron. Nachr. 328, 228.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  3. Birch, A.C., Kosovichev, A.G., Duvall, T.L. Jr.: 2004, Astrophys. J. 608, 580.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  4. Birch, A., Duvall, T.L., Gizon, L., Jackiewicz, J.: 2006, Bull. Am. Astronom. Soc. 38, 224. ADS. ADSGoogle Scholar
  5. Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, Science 272, 1286. ADS. ADSCrossRefGoogle Scholar
  6. Couvidat, S., Zhao, J., Birch, A.C., Kosovichev, A.G., Duvall, T.L., Parchevsky, K., Scherrer, P.H.: 2012, Solar Phys. 275, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. DeGrave, K., Jackiewicz, J., Rempel, M.: 2014, Astrophys. J. 788, 127.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  8. Duvall, T.L., Hanasoge, S.M.: 2013, Solar Phys. 287, 71.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Duvall, T.L., Hanasoge, S.M., Chakraborty, S.: 2014, Solar Phys. 289, 3421.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Duvall, T.L. Jr.: 1998, In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, SP-418, 581. ESA, Noordwijk. ADS. Google Scholar
  11. Duvall, T.L. Jr., Birch, A.C.: 2010, Astrophys. J. Lett. 725, L47.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  12. Duvall, T.L. Jr., Kosovichev, A.G., Scherrer, P.H., Bogart, R.S., Bush, R.I., de Forest, C., Hoeksema, J.T., Schou, J., Saba, J.L.R., Tarbell, T.D., Title, A.M., Wolfson, C.J., Milford, P.N.: 1997, Solar Phys. 170, 63. ADS. ADSCrossRefGoogle Scholar
  13. Gizon, L., Birch, A.C.: 2002, Astrophys. J. 571, 966.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Hanasoge, S.M.: 2014, Astrophys. J. 797, 23.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Hart, A.B.: 1954, Mon. Not. Roy. Astron. Soc. 114, 17. ADS. ADSCrossRefGoogle Scholar
  16. Hart, A.B.: 1956, Mon. Not. Roy. Astron. Soc. 116, 38. ADS. ADSCrossRefGoogle Scholar
  17. Hathaway, D.H., Beck, J.G., Bogart, R.S., Bachmann, K.T., Khatri, G., Petitto, J.M., Han, S., Raymond, J.: 2000, Solar Phys. 193, 299.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Hathaway, D.H., Beck, J.G., Han, S., Raymond, J.: 2002, Solar Phys. 205, 25. ADS. ADSCrossRefGoogle Scholar
  19. Hirzberger, J., Gizon, L., Solanki, S.K., Duvall, T.L.: 2008, Solar Phys. 251, 417.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Jackiewicz, J., Gizon, L., Birch, A.C.: 2008, Solar Phys. 251, 381.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kosovichev, A.G., Duvall, T.L. Jr.: 1997, In: Pijpers, F.P., Christensen-Dalsgaard, J., Rosenthal, C.S. (eds.) SCORe’96: Solar Convection and Oscillations and Their Relationship, Astrophys. Space Sci. Lib. 225, 241. Kluwer, Dordrecht. ADS. CrossRefGoogle Scholar
  22. Rempel, M.: 2014, Astrophys. J. 789, 132.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Rieutord, M., Meunier, N., Roudier, T., Rondi, S., Beigbeder, F., Parès, L.: 2008, Astron. Astrophys. 479, L17.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Roudier, T., Švanda, M., Rieutord, M., Malherbe, J.M., Burston, R., Gizon, L.: 2014, Astron. Astrophys. 567, A138.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Simon, G.W., Leighton, R.B.: 1964, Astrophys. J. 140, 1120.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Švanda, M.: 2012, Astrophys. J. Lett. 759, L29.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Švanda, M.: 2015, Astron. Astrophys. 575, A122.  DOI. ADS. CrossRefGoogle Scholar
  28. Williams, P.E., Pesnell, W.D., Beck, J.G., Lee, S.: 2014, Solar Phys. 289, 11.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Woodard, M.F.: 2007, Astrophys. J. 668, 1189.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Worden, S.P., Simon, G.W.: 1976, Solar Phys. 46, 73.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Zhao, J., Kosovichev, A.G.: 2003, In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, SP-517, 417. ESA, Noordwijk. ADS. Google Scholar
  32. Zhao, J., Georgobiani, D., Kosovichev, A.G., Benson, D., Stein, R.F., Nordlund, Å.: 2007, Astrophys. J. 659, 848.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Zhao, J., Couvidat, S., Bogart, R.S., Parchevsky, K.V., Birch, A.C., Duvall, T.L., Beck, J.G., Kosovichev, A.G., Scherrer, P.H.: 2012, Solar Phys. 275, 375.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of AstronomyNew Mexico State UniversityLas CrucesUSA

Personalised recommendations