Solar Physics

, Volume 290, Issue 5, pp 1399–1415 | Cite as

Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 – 2008

  • Hui Fu
  • Bo Li
  • Xing Li
  • Zhenghua Huang
  • Chaozhou Mou
  • Fangran Jiao
  • Lidong XiaEmail author


We identify the coronal sources of the solar winds sampled by the ACE spacecraft during 1999 – 2008 and examine the in situ solar wind properties as a function of wind sources. The standard two-step mapping technique is adopted to establish the photospheric footpoints of the magnetic flux tubes along which the ACE winds flow. The footpoints are then placed in the context of EIT 284 Å images and photospheric magnetograms, allowing us to categorize the sources into four groups: coronal holes (CHs), active regions (ARs), the quiet Sun (QS), and “undefined”. This practice also enables us to establish the response to solar activity of the fractions occupied by each type of solar wind, and of their speeds and O7+/O6+ ratios measured in situ. We find that during the maximum phase, the majority of ACE winds originate from ARs. During the declining phase, CHs and ARs are equally important contributors to the ACE solar winds. The QS contribution increases with decreasing solar activity and maximizes in the minimum phase when the QS appears to be the primary supplier of the ACE winds. With decreasing activity, the winds from all sources tend to become cooler, as represented by the increasingly low O7+/O6+ ratios. On the other hand, during each activity phase, the AR winds tend to be the slowest and are associated with the highest O7+/O6+ ratios, while the CH winds correspond to the other extreme, with the QS winds lying in between. Applying the same analysis method to the slow winds alone, here defined as the winds with speeds lower than 500 km s−1, we find basically the same overall behavior, as far as the contributions of individual groups of sources are concerned. This statistical study indicates that QS regions are an important source of the solar wind during the minimum phase.


Solar Wind, sources Solar wind, properties Solar cycle 



We would like to thank the anonymous referee for helpful comments. We thank the ACE SWICS, SWEPAM, and MAG instrument teams and the ACE Science Center for providing the ACE data. SOHO is a project of international cooperation between ESA and NASA. Wilcox Solar Observatory data used in this study were obtained via the web site courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA. This research is supported by the China 973 program 2012CB825601, the National Natural Science Foundation of China (41174154, 41274176, and 41274178), and the Ministry of Education of China (20110131110058 and NCET-11-0305). BL is also grateful to the International Space Science Institute (ISSI) for providing the financial support to the international team on the origins of the slow solar wind.

Supplementary material

(MOV 119.4 MB)


  1. Abbo, L., Antonucci, E., Mikić, Z., Linker, J.A., Riley, P., Lionello, R.: 2010, Characterization of the slow wind in the outer corona. Adv. Space Res. 46, 1400.  DOI. ADS. CrossRefADSGoogle Scholar
  2. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131.  DOI. ADS. CrossRefADSGoogle Scholar
  3. Antiochos, S.K., Linker, J.A., Lionello, R., Mikić, Z., Titov, V., Zurbuchen, T.H.: 2012, The structure and dynamics of the corona–heliosphere connection. Space Sci. Rev. 172, 169.  DOI. ADS. CrossRefADSGoogle Scholar
  4. Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: 2015, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947.  DOI. ADS. CrossRefADSGoogle Scholar
  5. Büergi, A., Geiss, J.: 1986, Helium and minor ions in the corona and solar wind – dynamics and charge states. Solar Phys. 103, 347.  DOI. ADS. CrossRefADSGoogle Scholar
  6. Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., Démoulin, P., Baker, D., DeRosa, M.L., Mandrini, C.H., Zhao, L., Zurbuchen, T.H.: 2014, Tracking solar active region outflow plasma from its source to the near-Earth environment. Solar Phys. 289, 3799.  DOI. ADS. CrossRefADSGoogle Scholar
  7. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291.  DOI. ADS. CrossRefADSGoogle Scholar
  8. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1.  DOI. ADS. CrossRefADSGoogle Scholar
  9. Esser, R., Edgar, R.J.: 2000, Reconciling spectroscopic electron temperature measurements in the solar corona with in situ charge state observations. Astrophys. J. Lett. 532, L71.  DOI. ADS. CrossRefADSGoogle Scholar
  10. Feldman, U., Landi, E., Schwadron, N.A.: 2005, On the sources of fast and slow solar wind. J. Geophys. Res. 110, 7109.  DOI. ADS. CrossRefGoogle Scholar
  11. Fu, H., Xia, L., Li, B., Huang, Z., Jiao, F., Mou, C.: 2014, Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations. Astrophys. J. 794, 109.  DOI. ADS. CrossRefADSGoogle Scholar
  12. Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497.  DOI. ADS. CrossRefADSGoogle Scholar
  13. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21.  DOI. ADS. CrossRefADSGoogle Scholar
  14. Habbal, S.R., Esser, R., Arndt, M.B.: 1993, How reliable are coronal hole temperatures deduced from observations? Astrophys. J. 413, 435.  DOI. ADS. CrossRefADSGoogle Scholar
  15. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147.  DOI. ADS. CrossRefADSGoogle Scholar
  16. Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810.  DOI. ADS. CrossRefADSGoogle Scholar
  17. Hefti, S., Grünwaldt, H., Bochsler, P., Aellig, M.R.: 2000, Oxygen freeze-in temperatures measured with SOHO/CELIAS/CTOF. J. Geophys. Res. 105, 10527.  DOI. ADS. CrossRefADSGoogle Scholar
  18. Ko, Y.-K., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275.  DOI. ADS. CrossRefADSGoogle Scholar
  19. Ko, Y.-K., Muglach, K., Wang, Y.-M., Young, P.R., Lepri, S.T.: 2014, Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low-latitude extension of polar coronal holes. Astrophys. J. 787, 121.  DOI. ADS. CrossRefADSGoogle Scholar
  20. Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104, 16993.  DOI. ADS. CrossRefADSGoogle Scholar
  21. Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505.  DOI. ADS. CrossRefADSGoogle Scholar
  22. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87.  DOI. ADS. CrossRefADSGoogle Scholar
  23. Landi, E., Alexander, R.L., Gruesbeck, J.R., Gilbert, J.A., Lepri, S.T., Manchester, W.B., Zurbuchen, T.H.: 2012a, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100.  DOI. ADS. CrossRefADSGoogle Scholar
  24. Landi, E., Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H.: 2012b, New solar wind diagnostic using both in situ and spectroscopic measurements. Astrophys. J. 750, 159.  DOI. ADS. CrossRefADSGoogle Scholar
  25. Lepri, S.T., Landi, E., Zurbuchen, T.H.: 2013, Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys. J. 768, 94.  DOI. ADS. CrossRefADSGoogle Scholar
  26. Levine, R.H.: 1982, Open magnetic fields and the solar cycle. I – Photospheric sources of open magnetic flux. Solar Phys. 79, 203.  DOI. ADS. CrossRefADSGoogle Scholar
  27. Li, B., Habbal, S.R., Li, X., Mountford, C.: 2005, Effect of the latitudinal distribution of temperature at the coronal base on the interplanetary magnetic field configuration and the solar wind flow. J. Geophys. Res. 110, 12112.  DOI. ADS. CrossRefGoogle Scholar
  28. Liewer, P.C., Neugebauer, M., Zurbuchen, T.: 2004, Characteristics of active-region sources of solar wind near solar maximum. Solar Phys. 223, 209.  DOI. ADS. CrossRefADSGoogle Scholar
  29. Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154.  DOI. ADS. CrossRefGoogle Scholar
  30. Madjarska, M.S., Huang, Z., Doyle, J.G., Subramanian, S.: 2012, Coronal hole boundaries evolution at small scales. III. EIS and SUMER views. Astron. Astrophys. 545, A67.  DOI. ADS. CrossRefADSGoogle Scholar
  31. Mandrini, C.H., Nuevo, F.A., Vásquez, A.M., Démoulin, P., van Driel-Gesztelyi, L., Baker, D., Culhane, J.L., Cristiani, G.D., Pick, M.: 2014, How can active region plasma escape into the solar wind from below a closed helmet streamer? Solar Phys. 289, 4151.  DOI. ADS. CrossRefADSGoogle Scholar
  32. Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.  DOI. ADS. CrossRefADSGoogle Scholar
  33. Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to Ni. Astron. Astrophys. Suppl. 133, 403.  DOI. ADS. CrossRefADSGoogle Scholar
  34. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563.  DOI. ADS. CrossRefADSGoogle Scholar
  35. Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., Lepping, R.P., Linker, J.A., Mikic, Z., Steinberg, J.T., von Steiger, R., Wang, Y.-M., Wimmer-Schweingruber, R.F.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res. 103, 14587.  DOI. ADS. CrossRefADSGoogle Scholar
  36. Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488.  DOI. ADS. CrossRefGoogle Scholar
  37. Noci, G., Kohl, J.L., Antonucci, E., Tondello, G., Huber, M.C.E., Fineschi, S., Gardner, L.D., Korendyke, C.M., Nicolosi, P., Romoli, M., Spadaro, D., Maccari, L., Raymond, J.C., Siegmund, O.H.W., Benna, C., Ciaravella, A., Giordano, S., Michels, J., Modigliani, A., Naletto, G., Panasyuk, A., Pernechele, C., Poletto, G., Smith, P.L., Strachan, L.: 1997, The quiescent corona and slow solar wind. In: Wilson, A. (ed.) Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, ESA SP-404, 75. ADS. Google Scholar
  38. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: High coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241.  DOI. ADS. CrossRefADSGoogle Scholar
  39. Owocki, S.P., Holzer, T.E., Hundhausen, A.J.: 1983, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354.  DOI. ADS. CrossRefADSGoogle Scholar
  40. Poletto, G.: 2013, Sources of solar wind over the solar activity cycle. J. Adv. Res. 4, 215.  DOI. ADS. CrossRefGoogle Scholar
  41. Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, 9104.  DOI. ADS. CrossRefGoogle Scholar
  42. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510.  DOI. ADS. CrossRefADSGoogle Scholar
  43. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585.  DOI. ADS. CrossRefADSGoogle Scholar
  44. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.  DOI. ADS. CrossRefADSGoogle Scholar
  45. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165.  DOI. ADS. CrossRefADSGoogle Scholar
  46. Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51.  DOI. ADS. CrossRefADSGoogle Scholar
  47. Sheeley, N.R., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R. Astrophys. J. 484, 472. ADS. CrossRefADSGoogle Scholar
  48. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613.  DOI. ADS. CrossRefADSGoogle Scholar
  49. Snyder, C.W., Neugebauer, M.: 1966, The relation of Mariner-2 plasma data to solar phenomena. In: Mackin, R.J. Jr., Neugebauer, M. (eds.) The Solar Wind, 25. ADS. Google Scholar
  50. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1.  DOI. ADS. CrossRefADSGoogle Scholar
  51. Subramanian, S., Madjarska, M.S., Doyle, J.G.: 2010, Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind. Astron. Astrophys. 516, A50.  DOI. ADS. CrossRefADSGoogle Scholar
  52. Suess, S.T., Wang, A.-H., Wu, S.T., Nerney, S.F.: 1999, Streamer evaporation. Space Sci. Rev. 87, 323.  DOI. ADS. CrossRefADSGoogle Scholar
  53. Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005, Solar wind origin in coronal funnels. Science 308, 519.  DOI. ADS. CrossRefADSGoogle Scholar
  54. van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281, 237.  DOI. ADS. CrossRefADSGoogle Scholar
  55. Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.  DOI. ADS. CrossRefADSGoogle Scholar
  56. Wang, Y.-M., Sheeley, N.R. Jr.: 2003, The solar wind and its magnetic sources at sunspot maximum. Astrophys. J. 587, 818.  DOI. ADS. CrossRefADSGoogle Scholar
  57. Wang, Y.-M., Ko, Y.-K., Grappin, R.: 2009, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760.  DOI. ADS. CrossRefADSGoogle Scholar
  58. Wang, Y.-M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Schwenn, R., Simnett, G.M.: 1998, Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165.  DOI. ADS. CrossRefADSGoogle Scholar
  59. Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5.  DOI. ADS. CrossRefADSGoogle Scholar
  60. Zhao, L., Landi, E.: 2014, Polar and equatorial coronal hole winds at solar minima: from the heliosphere to the inner corona. Astrophys. J. 781, 110.  DOI. ADS. CrossRefADSGoogle Scholar
  61. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, 14104.  DOI. ADS. CrossRefADSGoogle Scholar
  62. Zharkova, V.V., Aboudarham, J., Zharkov, S., Ipson, S.S., Benkhalil, A.K., Fuller, N.: 2005, Solar feature catalogues in EGSO. Solar Phys. 228, 361.  DOI. ADS. CrossRefADSGoogle Scholar
  63. Zirker, J.B.: 1977, Coronal holes and high-speed wind streams. Rev. Geophys. Space Phys. 15, 257.  DOI. ADS. CrossRefADSGoogle Scholar
  64. Zurbuchen, T.H.: 2001, Heliospheric magnetic field configuration and its coronal sources. In: Brekke, P., Fleck, B., Gurman, J.B. (eds.) Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, IAU Symposium 203, 585. ADS. Google Scholar
  65. Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G., Schwadron, N.A.: 2000, Magnetic structure of the slow solar wind: constraints from composition data. J. Geophys. Res. 105, 18327.  DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hui Fu
    • 1
  • Bo Li
    • 1
  • Xing Li
    • 2
  • Zhenghua Huang
    • 1
  • Chaozhou Mou
    • 1
  • Fangran Jiao
    • 1
  • Lidong Xia
    • 1
    Email author
  1. 1.Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space SciencesShandong UniversityWeihaiChina
  2. 2.Department of PhysicsAberystwyth UniversityAberystwythUK

Personalised recommendations