Solar Physics

, Volume 290, Issue 5, pp 1355–1370 | Cite as

Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data

  • T. Rotter
  • A. M. Veronig
  • M. Temmer
  • B. Vršnak


We present an empirical model based on the visible area covered by coronal holes close to the central meridian with the aim to predict the solar wind speed at 1 AU with a lead time of up to four days in advance with a time resolution of one hour. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous three Carrington Rotations. Thus the algorithm automatically reacts to the changes of the solar wind speed during different phases of the solar cycle. The adaptive algorithm was applied to and tested on SDO/AIA-193 Å observations and ACE measurements during the years 2011 – 2013, covering 41 Carrington Rotations. The solar wind needs on average 4.02±0.5 days to reach Earth. The algorithm produces good predictions for the 156 solar wind high-speed streams peak amplitudes with correlation coefficients of cc≈0.60. For 80 % of the peaks, the predicted arrival matches the ACE in situ measurements within a time window of 0.5 days. The same algorithm, using linear predictions, was also applied to predict the magnetic field strength in wind streams originating from coronal hole areas, but it did not give reliable predictions (cc≈0.15).


Solar Cycle Coronal holes Solar wind 



We thank the referee for the careful evaluation of the paper and the helpful comments made to improve this paper. We acknowledge the NASA/SDO and the AIA teams. We acknowledge the ACE SWEPAM and MAG instrument teams and the ACE Science Center. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under the grant agreement FP7 No. 263252 (COMESEP). T.R., A.M.V., and M.T. acknowledge the Austrian Science Fund (FWF): P24092-N16 and V195-N16. T.R. gratefully acknowledges support from NAWI Graz and the Forschungsstipendium by the University of Graz. B.V. acknowledges financial support by the Croatian Science Foundation under the project 6212 SOLSTEL.


  1. Abramenko, V., Yurchyshyn, V., Watanabe, H.: 2009, Parameters of the magnetic flux inside coronal holes. Solar Phys. 260, 43.  DOI. CrossRefADSGoogle Scholar
  2. Aiouaz, T., Peter, H., Lemaire, P.: 2005, The correlation between coronal Doppler shifts and the supergranular network. Astron. Astrophys. 435, 713.  DOI. CrossRefADSGoogle Scholar
  3. Altschuler, M.D., Trotter, D.E., Orrall, F.Q.: 1972, Coronal holes. Solar Phys. 26, 354.  DOI. CrossRefADSGoogle Scholar
  4. Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.F.: 2009, Fast and robust segmentation of solar EUV images: Algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361.  DOI. CrossRefADSGoogle Scholar
  5. Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, 1156.  DOI. CrossRefGoogle Scholar
  6. Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. CrossRefADSGoogle Scholar
  7. Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933.  DOI. CrossRefADSGoogle Scholar
  8. de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195.  DOI. CrossRefADSGoogle Scholar
  9. de Toma, G., Arge, C.N., Riley, P.: 2005, Observed and modeled coronal holes. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ESA SP 592, 609. Google Scholar
  10. Del Zanna, G., Bromage, B.J.I.: 1999, The elephant’s trunk: Spectroscopic diagnostics applied to SOHO/CDS observations of the August 1996 equatorial coronal hole. J. Geophys. Res. 104, 9753.  DOI. CrossRefADSGoogle Scholar
  11. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21.  DOI. CrossRefADSGoogle Scholar
  12. Gressl, C., Veronig, A.M., Temmer, M., Odstrčil, D., Linker, J.A., Mikić, Z., Riley, P.: 2014, Comparative study of MHD modeling of the background solar wind. Solar Phys. 289, 1783.  DOI. CrossRefADSGoogle Scholar
  13. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31.  DOI. CrossRefADSGoogle Scholar
  14. Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810.  DOI. CrossRefADSGoogle Scholar
  15. Hundhausen, A.J.: 1972, Composition and dynamics of the solar wind plasma. In: Dyer, E.R., Roederer, J.G., Hundhausen, A.J. (eds.) The Interplanetary Medium: Part II of Solar-Terrestrial Physics, Reidel, Dordrecht, 1. CrossRefGoogle Scholar
  16. Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrcil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016 – 2018. Solar Phys. 273, 179.  DOI. CrossRefADSGoogle Scholar
  17. Kan, J.R., Lee, L.C.: 1979, Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 6, 577.  DOI. CrossRefADSGoogle Scholar
  18. Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99.  DOI. CrossRefADSGoogle Scholar
  19. Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505.  DOI. CrossRefADSGoogle Scholar
  20. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87.  DOI. CrossRefADSGoogle Scholar
  21. Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations. Solar Phys. 254, 155.  DOI. CrossRefADSGoogle Scholar
  22. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17.  DOI. CrossRefADSGoogle Scholar
  23. Lowder, C., Qiu, J., Leamon, R., Liu, Y.: 2014, Measurements of EUV coronal holes and open magnetic flux. Astrophys. J. 783, 142.  DOI. CrossRefADSGoogle Scholar
  24. Luo, B., Zhong, Q., Liu, S., Gong, J.: 2008, A new forecasting index for solar wind velocity based on EIT 284 Å observations. Solar Phys. 250, 159.  DOI. CrossRefADSGoogle Scholar
  25. McComas, D.J., Bame, S.J., Barker, P.L., Delapp, D.M., Feldman, W.C., Gosling, J.T., Santiago, E., Skoug, R.M., Tokar, R.L., Riley, P., Phillips, J.L., Griffee, J.W.: 1998, An unusual coronal mass ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) results from the Advanced Composition Explorer. Geophys. Res. Lett. 25, 4289.  DOI. CrossRefADSGoogle Scholar
  26. McIntosh, P.S.: 2003, Patterns and dynamics of solar magnetic fields and He I coronal holes in cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP 535, 807. Google Scholar
  27. Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511.  DOI. CrossRefADSGoogle Scholar
  28. Neupert, W.M., Pizzo, V.: 1974, Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701.  DOI. CrossRefADSGoogle Scholar
  29. Newkirk, J.G.: 1967, Structure of the solar corona. Annu. Rev. Astron. Astrophys. 5, 213.  DOI. CrossRefADSGoogle Scholar
  30. Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, G.E.C., Lazarus, A.J., Sullivan, J.D., McIntosh, P.S.: 1976, Coronal holes as sources of solar wind. Solar Phys. 46, 303.  DOI. CrossRefADSGoogle Scholar
  31. Obridko, V.N., Shelting, B.D., Livshits, I.M., Asgarov, A.B.: 2009, Contrast of coronal holes and parameters of associated solar wind streams. Solar Phys. 260, 191.  DOI. CrossRefADSGoogle Scholar
  32. Odstrcil, D., Pizzo, V.J.: 2009, Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO Heliospheric Imagers. Solar Phys. 259, 297.  DOI. CrossRefADSGoogle Scholar
  33. Perreault, P., Akasofu, S.I.: 1978, A study of geomagnetic storms. Geophys. J. 54, 547.  DOI. CrossRefADSGoogle Scholar
  34. Peter, H., Judge, P.G.: 1999, On the Doppler shifts of solar ultraviolet emission lines. Astrophys. J. 522, 1148.  DOI. CrossRefADSGoogle Scholar
  35. Pötzi, W., Hirtenfellner-Polanec, W., Temmer, M.: 2013, The Kanzelhöhe online data archive. Cent. Eur. Astrophys. Bull. 37, 655. ADSGoogle Scholar
  36. Reiss, M., Temmer, M., Rotter, T., Hofmeister, S.J., Veronig, A.M.: 2014, Identification of coronal holes and filament channels in SDO/AIA 193 Å images via geometrical classification methods. Cent. Eur. Astrophys. Bull. 38, 95. ADSGoogle Scholar
  37. Riley, P., Linker, J.A., Lionello, R., Mikic, Z.: 2012, Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 83, 1.  DOI. CrossRefADSGoogle Scholar
  38. Robbins, S., Henney, C.J., Harvey, J.W.: 2006, Solar wind forecasting with coronal holes. Solar Phys. 233, 265.  DOI. CrossRefADSGoogle Scholar
  39. Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the Sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793.  DOI. CrossRefADSGoogle Scholar
  40. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425.  DOI. CrossRefADSGoogle Scholar
  41. Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51.  DOI. CrossRefADSGoogle Scholar
  42. Siscoe, G., Crooker, N.: 1974, A theoretical relation between Dst and the solar wind merging electric field. Geophys. Res. Lett. 1, 17.  DOI. CrossRefADSGoogle Scholar
  43. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613.  DOI. CrossRefADSGoogle Scholar
  44. Stevens, M.L., Linker, J.A., Riley, P., Hughes, W.J.: 2012, Underestimates of magnetic flux in coupled MHD model solar wind solutions. J. Atmos. Solar-Terr. Phys. 83, 22.  DOI. CrossRefADSGoogle Scholar
  45. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1.  DOI. CrossRefADSGoogle Scholar
  46. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101.  DOI. CrossRefADSGoogle Scholar
  47. Tousey, R., Sandlin, G.D., Purcell, J.D.: 1968, On some aspects of XUV spectroheliograms. In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 411. CrossRefGoogle Scholar
  48. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717.  DOI. CrossRefADSGoogle Scholar
  49. Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20.  DOI. CrossRefADSGoogle Scholar
  50. Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85.  DOI. CrossRefADSGoogle Scholar
  51. Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29.  DOI. CrossRefADSGoogle Scholar
  52. Vršnak, B., Temmer, M., Veronig, A.M.: 2007a, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315.  DOI. CrossRefADSGoogle Scholar
  53. Vršnak, B., Temmer, M., Veronig, A.M.: 2007b, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331.  DOI. CrossRefADSGoogle Scholar
  54. Wilcox, J.M.: 1968, The interplanetary magnetic field. Solar origin and terrestrial effects. Space Sci. Rev. 8, 258.  DOI. CrossRefADSGoogle Scholar
  55. Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5.  DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • T. Rotter
    • 1
  • A. M. Veronig
    • 1
  • M. Temmer
    • 1
  • B. Vršnak
    • 2
  1. 1.Kanzelhöhe Observatory-IGAM, Institute of PhysicsUniversity of GrazGrazAustria
  2. 2.Faculty of GeodesyHvar ObservatoryZagrebCroatia

Personalised recommendations