Advertisement

Solar Physics

, Volume 290, Issue 5, pp 1479–1489 | Cite as

Objective Image-Quality Assessment for High-Resolution Photospheric Images by Median Filter-Gradient Similarity

  • Hui Deng
  • Dandan Zhang
  • Tianyu Wang
  • Kaifan Ji
  • Feng Wang
  • Zhong Liu
  • Yongyuan Xiang
  • Zhenyu Jin
  • Wenda Cao
Article

Abstract

All next-generation ground-based and space-based solar telescopes require a good quality-assessment metric to evaluate their imaging performance. In this paper, a new image quality metric, the median filter-gradient similarity (MFGS) is proposed for photospheric images. MFGS is a no-reference/blind objective image-quality metric (IQM) by a measurement result between 0 and 1 and has been performed on short-exposure photospheric images captured by the New Vacuum Solar Telescope (NVST) of the Fuxian Solar Observatory and by the Solar Optical Telescope (SOT) onboard the Hinode satellite, respectively. The results show that (1) the measured value of the MFGS changes monotonically from 1 to 0 with degradation of image quality; (2) there exists a linear correlation between the measured values of the MFGS and the root-mean-square contrast (RMS-contrast) of the granulation; (3) the MFGS is less affected by the image contents than the granular RMS-contrast. Overall, the MFGS is a good alternative for the quality assessment of photospheric images.

Keywords

High resolution imaging Image quality Instrumentation and data management 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11163004, U1231205, 11263004, 11303011, 11103005, 11463003 and 11203077) and Natural Science Foundation of Yunnan Province (2013FA013, 2013FA032, 2013FZ018 and 2013FZ018). Wenda Cao acknowledges the support of the US National Science Foundation (AGS-0847126, AGS-1146896). Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). We thank the referee for providing valuable suggestions that substantially helped to improve the quality of the article.

References

  1. Albregtsen, F., Hansen, T.L.: 1977, The wavelength dependence of granulation (0.38 –  2.4 μm). Solar Phys. 54, 31. CrossRefADSGoogle Scholar
  2. Arias-Castro, E., Donoho, D.L.: 2009, Does median filtering truly preserve edges better than linear filtering? Ann. Stat. 37, 1172. CrossRefzbMATHMathSciNetGoogle Scholar
  3. Asatryan, D., Egiazarian, K.: 2009, Quality assessment measure based on image structural properties. In: 2009 International Workshop on Local and Non-Local Approximation in Image Processing, IEEE Press, New York, 70. CrossRefGoogle Scholar
  4. Bos, J.P., Roggemann, M.C.: 2012, Blind image quality metrics for optimal speckle image reconstruction in horizontal imaging scenarios. Opt. Eng. 51, 107003. ADSGoogle Scholar
  5. Brownrigg, D.: 1984, The weighted median filter. Commun. ACM 27, 807. CrossRefGoogle Scholar
  6. Chen, G.-H., Yang, C.-L., Xie, S.-L.: 2006, Gradient-based structural similarity for image quality assessment. In: 2006 International Conference on Image Processing, IEEE Press, New York, 2929. CrossRefGoogle Scholar
  7. Crete, F., Dolmiere, T., Ladret, P., Nicolas, M.: 2007, The blur effect: Perception and estimation with a new no-reference perceptual blur metric. In: IS&T/SPIE Electronic Imaging 2007 12, 64920I. Google Scholar
  8. Cuberes, M.S., Bonet, J., Vozquez, M., Wittmann, A.: 2000, Center-to-limb variation of solar granulation from partial eclipse observations. Astrophys. J. 538, 940. CrossRefADSGoogle Scholar
  9. Danilovic, S., Gandorfer, A., Lagg, A., Schissler, M., Solanki, S.K., Vögler, A., Katsukawa, Y., Tsuneta, S.: 2008, The intensity contrast of solar granulation: Comparing Hinode SP results with MHD simulations. Astron. Astrophys. 484, L17. CrossRefADSGoogle Scholar
  10. Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.: 2005, High-spatial-resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction. Solar Phys. 227, 217. CrossRefADSGoogle Scholar
  11. Denker, C., Tritschler, A., Rimmele, T.R., Richards, K., Hegwer, S.L., Wager, F.: 2007, Adaptive optics at the Big Bear Solar Observatory: Instrument description and first observations. Publ. Astron. Soc. Pac. 119, 170. CrossRefADSGoogle Scholar
  12. Garrel, V., Guyon, O., Baudoz, P.: 2012, A highly efficient lucky imaging algorithm: Image synthesis based on Fourier amplitude selection. Publ. Astron. Soc. Pac. 124, 861. CrossRefADSGoogle Scholar
  13. Kim, D.-O., Han, H.-S., Park, R.-H.: 2010, Gradient information-based image quality metric. IEEE Trans. Consum. Electron. 56, 930. CrossRefGoogle Scholar
  14. Liang, L., Wang, S., Chen, J., Ma, S., Zhao, D., Gao, W.: 2010, No-reference perceptual image quality metric using gradient profiles for JPEG2000. Signal Process. Image Commun. 25, 502. CrossRefGoogle Scholar
  15. Lin, H.-M., Willson, A. Jr.: 1988, Median filters with adaptive length. IEEE Trans. Circuits Syst. 35, 675. CrossRefMathSciNetGoogle Scholar
  16. Liu, Z., Xu, J.: 2011, 1-meter near-infrared solar telescope. In: Choudhuri, A.R., Banerjee, D. (eds.) First Asia–Pacific Solar Physics Meeting, ASI Conf. Ser. 2, 9. Google Scholar
  17. Liu, Z., Xu, J., Gu, Z.B., Wang, S., You, J.Q., Shen, L.X., Lu, R.W., Jin, Z.Y., Chen, L.F., Lou, K., Li, Z., Lu, G.Q., Xu, Z., Rao, C.H., Hu, Q.Q., Li, R.F., Fu, H.W., Wang, F., Bao, M.X., Wu, M.C., Zhang, B.R.: 2014, New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. CrossRefADSGoogle Scholar
  18. Rehman, A., Wang, Z.: 2012, Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21, 3378. CrossRefADSMathSciNetGoogle Scholar
  19. Ricort, G., Aime, C.: 1979, Solar seeing and the statistical properties of the photospheric solar granulation III. Solar speckle interferometry. Astron. Astrophys. 76, 324. ADSGoogle Scholar
  20. Roudier, T., Muller, R.: 1986, Structure of the solar granulation. Solar Phys. 107, 11. CrossRefADSGoogle Scholar
  21. Scharmer, G.B.: 1989, High resolution granulation observations from La Palma: Techniques and first results. In: Rutten, R.J., Severino, G. (eds.) Solar and Stellar Granulation, NATO Advanced Research Workshop 263, Springer, Berlin, 161. CrossRefGoogle Scholar
  22. Scharmer, G.B., Lofdahl, M.G., van Werkhoven, T.I.M., de la Cruz Rodríguez, J.: 2010, High-order aberration compensation with multi-frame blind deconvolution and phase diversity image restoration techniques. Astron. Astrophys. 521, 68. CrossRefADSGoogle Scholar
  23. Sun, T., Neuvo, Y.: 1994, Detail-preserving median based filters in image processing. Pattern Recognit. Lett. 15, 341. CrossRefGoogle Scholar
  24. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. CrossRefADSGoogle Scholar
  25. von der Luhe, O.: 1984, Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence. J. Opt. Soc. Am. A 1, 510. CrossRefADSGoogle Scholar
  26. Wang, Z., Zhang, D.: 1999, Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46, 78. CrossRefGoogle Scholar
  27. Wang, Z., Bovik, A.C., Lu, L.G.: 2002, Why is image quality assessment so difficult? In: 2002 International Conference on Acoustics, Speech, and Signal Processing 4 IEEE Press, New York, 3313. Google Scholar
  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: 2004, Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 600. CrossRefADSGoogle Scholar
  29. Zhang, S., Suess, F.F., Mackay, C.D.: 2006, Anisoplanatic lucky imaging for surveillance. Ph.D. Thesis, University of Cambridge. Google Scholar
  30. Zhu, J., Wang, N.: 2012, Image quality assessment by visual gradient similarity. IEEE Trans. Image Process. 21, 919. CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hui Deng
    • 1
  • Dandan Zhang
    • 1
  • Tianyu Wang
    • 1
  • Kaifan Ji
    • 1
  • Feng Wang
    • 1
    • 2
  • Zhong Liu
    • 2
  • Yongyuan Xiang
    • 2
  • Zhenyu Jin
    • 2
  • Wenda Cao
    • 3
  1. 1.Computer Technology Key Lab of Yunnan ProvinceKunming University of Science and TechnologyKunmingChina
  2. 2.Yunnan ObservatoriesChinese Academy of SciencesKunmingChina
  3. 3.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations